
Computers & Security 132 (2023) 103325

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

Confine: Fine-grained system call filtering for container attack surface

reduction

Maryam Rostamipoor, Seyedhamed Ghavamnia

∗, Michalis Polychronakis

Stony Brook University, United States

a r t i c l e i n f o

Article history:

Received 21 December 2022

Revised 30 May 2023

Accepted 5 June 2023

Available online 14 June 2023

Keywords:

Debloating

Attack surface reduction

Program analysis

System call filtering

Argument concretization

a b s t r a c t

Reducing the attack surface of the OS kernel is a promising defense-in-depth approach for mitigating the

fragile isolation guarantees of container environments. In contrast to hypervisor-based systems, malicious

containers can exploit vulnerabilities in the underlying kernel to fully compromise the host and all other

containers running on it. Previous container attack surface reduction efforts have relied on dynamic anal-

ysis and training using representative workloads to limit the set of system calls exposed to containers.

These approaches, however, do not capture exhaustively all the code that can potentially be needed by

future workloads or rare runtime conditions, and are thus not appropriate as a generic solution.

Aiming to provide a practical solution for the protection of arbitrary containers, in this paper we present

a generic approach for the automated generation of restrictive system call policies for Docker containers.

Our system, named Confine , uses static code analysis to inspect the containerized application and all its

dependencies, identify the superset of system calls required for the correct operation of the container, and

generate both a container-wide and application-specific Seccomp system call policy that can be readily

enforced while loading the container and launching the main program. We also show that further attack

surface reduction is possible by enforcing fine-grained system call policies that do not only consider the

system calls used by the target application, but also their argument values.

The results of our experimental evaluation with a set of 27 Docker images show that applying container-

wide filtering disables more than 145 system calls on average across the entire container, and application-

specific filtering increases the number of filtered system calls by 25% on average, as many system calls

used exclusively by utilities and scripts during the container’s initialization phase can be safely removed

afterwards.

© 2023 Elsevier Ltd. All rights reserved.

1

t

u

b

c

a

h

a

s

p

c

w

a

n

h

t

c

c

p

p

b

s

e

a

h

0

. Introduction

The convenience of running containers and managing them

hrough orchestrators, such as Kubernetes (kub, c2023), has pop-

larized their use by developers and organizations, as they provide

oth lower cost and increased flexibility. In contrast to virtual ma-

hines, which run their own operating system (OS), multiple ten-

nts can launch containers on top of the same OS kernel of the

ost. This makes containers more lightweight compared to VMs,

nd thus allows for running a higher number of instances on the

ame hardware (Butler, 2016).

The performance gains of containers, however, come to the ex-

ense of weaker isolation compared to VMs. Isolation between

ontainers running on the same host is enforced purely in soft-
∗ Corresponding author.

E-mail address: sghavamnia@cs.stonybrook.edu (S. Ghavamnia).

e

i

y

ttps://doi.org/10.1016/j.cose.2023.103325

167-4048/© 2023 Elsevier Ltd. All rights reserved.
are by the underlying OS kernel. Therefore, adversaries who have

ccess to a container on a third-party host can exploit kernel vul-

erabilities to escalate their privileges and fully compromise the

ost (and all the other containers running on it).

The trusted computing base in container environments essen-

ially comprises the entire kernel, and thus all its entry points be-

ome part of the attack surface exposed to potentially malicious

ontainers. Despite the use of strict software isolation mechanisms

rovided by the OS, such as capabilities (lin, 2023a) and names-

aces (lin, c2023c), a malicious tenant can leverage kernel vulnera-

ilities to bypass them. For example, a vulnerability in the waitid
ystem call (cve, 2017) allowed malicious users to run a privilege

scalation attack (Shapira, 2017) and escape the container to gain

ccess to the host.

At the same time, the code base of the Linux kernel has been

xpanding to support new features, protocols, and hardware. The

ncrease in the number of exposed system calls throughout the

ears is indicative of the kernel’s code “bloat.” The first version

https://doi.org/10.1016/j.cose.2023.103325
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2023.103325&domain=pdf
mailto:sghavamnia@cs.stonybrook.edu
https://doi.org/10.1016/j.cose.2023.103325

M. Rostamipoor, S. Ghavamnia and M. Polychronakis Computers & Security 132 (2023) 103325

o

w

A

m

p

e

k

w

e

s

t

o

i

g

h

u

2

e

l

2

e

f

l

l

s

m

s

s

e

(

o

2

e

t

w

t

n

b

r

t

y

i

l

t

o

W

g

a

a

b

f

b

a

t

n

p

a

r

n

w

s

s

g

t

t

c

c

i

t

v

t

u

n

a

r

p

m

i

a

t

m

k

/

2

r

t

i

B

c

2

c

k

p

p

r

a

a

s

c

t

a

p

a

p

i

s

t

t

d

c

a

t

c

p

p

b

f the Linux kernel (released in 1991) had just 126 system calls,

hereas version 5.4 (released in 2019) supports 335 system calls.

s shown in previous works (Gu et al., 2014; He et al., 2007; Kur-

us et al., 2013; Lee et al., 2004), different applications use dis-

arate kernel features, leaving the rest unused—and available to be

xploited by attackers. Kurmus et al. (2013) showed that each new

ernel function is an entry point to accessing a large part of the

hole kernel code, which leads to attack surface expansion.

As a countermeasure to the ever expanding code base of mod-

rn software, attack surface reduction techniques have recently

tarted gaining traction. The main idea behind these techniques is

o identify and remove (or neutralize) code which, although is part

f the program, it is either i) completely inaccessible (e.g., non-

mported functions from shared libraries), or ii) not needed for a

iven workload or configuration. A wide range of previous works

ave applied this concept at different levels, including removing

nused functions from shared libraries (Mishra and Polychronakis,

018; Mulliner and Neugschwandtner, 2015; Quach et al., 2018) or

ven removing whole unneeded libraries (Koo et al., 2019); tai-

oring kernel code based on application requirements (Gu et al.,

014; Kurmus et al., 2013); or limiting system calls for contain-

rs (Rastogi et al., 2017a; 2017b; doc, 2023; Wan et al., 2017). In

act, one of the suggestions in the NIST container security guide-

ines (Murugiah Souppaya, 2017) is to reduce the attack surface by

imiting the functionality available to containers.

Despite their diverse nature, a common underlying challenge

hared by all these approaches is how to accurately identify and

aximize the code that can be safely removed. On one end of the

pectrum, works based on static code analysis follow a more con-

ervative approach, and opt for maintaining compatibility in the

xpense of not removing all the code that is actually unneeded

i.e., “remove what is not needed”). In contrast, some works rely

n dynamic analysis and training (Gu et al., 2014; Kurmus et al.,

013; Rastogi et al., 2017a; 2017b; doc, 2023; Wan et al., 2017) to

xercise the system using realistic workloads, and identify the ac-

ual code that was executed while discarding the rest (i.e., “keep

hat is needed”). For a given workload, this approach maximizes

he code that can be removed, but as we show in Section 3 , it does

ot capture exhaustively all the code that can potentially be needed

y different workloads—let alone parts of code that are executed

arely, such as error handling routines.

Given that previous efforts in the area of attack surface reduc-

ion for container environments have focused on dynamic anal-

sis (Rastogi et al., 2017a; 2017b; doc, 2023; Wan et al., 2017),

n this work we aim to provide a more generic and practical so-

ution that can be readily applied for the protection of any con-

ainer without the need for training. Another shared characteristic

f most previous works (Rastogi et al., 2017a; 2017b; doc, 2023;

an et al., 2017) is that they consider the entire container as a sin-

le entity, and generate system call policies for its whole lifetime,

s opposed for the final target application. In addition, they follow

n all-or-nothing approach to system calls, with each system call

eing either allowed or denied, missing out on the opportunity to

urther restrict the allowed interactions with the OS by partially

locking some system call functionality.

In this paper, we present an automated technique for gener-

ting restrictive system call policies for arbitrary containers, with

he goal of limiting the exposed interface of the underlying ker-

el that can be abused. By relying on static code analysis, our ap-

roach inspects all execution paths of the containerized application

nd all its dependencies, and identifies the superset of system calls

equired for the correct operation of the container. Our system,

amed Confine , improves upon the state of the art in three main

ays. First, it uses static (instead of dynamic) analysis to build a

ound profile for the entire container. Second, based on the ob-

ervation that containers typically host a single, long-running tar-
2
et application, Confine creates a second application-specific filter

hat is installed right before the execution of the target applica-

ion. This increases significantly the number of filtered system calls

ompared to container-wide system call filtering, as many system

alls used exclusively by utility programs during the container’s

nitialization phase can be safely filtered afterwards. Third, for sys-

em calls that cannot be filtered, Confine concretizes (in a conser-

ative, best-effort way) their arguments according to the applica-

ion’s needs. This prohibits the use of certain flag and constant val-

es, which in many cases prevents the exploitation of kernel vul-

erabilities associated with non-filtered system calls.

We experimentally evaluated Confine with a set of 27 publicly

vailable Docker images, and demonstrate its effectiveness in de-

iving strict system call policies without breaking functionality. In

articular, for about half of the containers, Confine disables 144 or

ore system calls (out of 335) by applying container-wide filter-

ng. In addition to container-wide system call filtering, Confine’s

pplication-specific filtering increases the number of filtered sys-

em calls by 25% on average. On top of system call filtering, argu-

ent concretization results in the mitigation of a total of 28 Linux

ernel CVEs across all tested container images.

Confine is publicly available as an open-source project at: https:

/www.github.com/shamedgh/confine .

. Background

The attack surface of the OS kernel used by containers can be

educed by restricting the set of system calls available to each con-

ainer. In this section, we describe how Linux containers provide

solation to different “containerized” processes, and how Seccomp

PF (sec, 2023) can be used to reduce the kernel code exposed to

ontainers.

.1. Linux containers

Linux containers are an OS-level virtualization approach that

an be used to execute multiple userlands on top of the same

ernel. The Linux kernel uses Capabilities (lin, 2023a), Names-

aces (lin, c2023c) and Control Groups (cgroups) (lin, 2023b) to

rovide isolation among different containers.

Namespaces are a kernel feature that virtualizes global system

esources (specifically: mount points, process IDs, network devices

nd network stacks, IPC objects, hostnames, user and group IDs,

nd cgroups), providing the “illusion” of exclusive use of these re-

ources to processes within the same namespace.

Control Groups allow processes to be organized into hierarchi-

al groups, whose usage of various types of resources (e.g., CPU

ime, memory, disk space, disk and network I/O) can be limited,

ccounted, or prioritized accordingly. Containers use cgroups to

rovide “fair” usage of resources.

Docker (Doc, 2023a) is a platform that employs the software-

s-a-service and platform-as-a-service models for developing, de-

loying, and running containers. Every Docker container launched

s based on a Docker image, which is a file built in layers, encap-

ulating the entire environment (including a whole Linux distribu-

ion, libraries, and support utilities) required to execute the con-

ainerized application(s). The specification of the Docker image is

escribed in a text file, called Dockerfile . The Dockerfile essentially

ontains all the commands required to assemble the respective im-

ge. Docker uses Linux namespaces and cgroups to provide isola-

ion between containers.

Docker Hub (doc, 2023a) is a central repository of both

ommunity-based and official Docker images, which has drastically

opularized container use among system administrators. More im-

ortantly, by building streamlined services with a minimal code

ase, Docker has enabled corporations to increasingly switch to

https://www.github.com/shamedgh/confine

M. Rostamipoor, S. Ghavamnia and M. Polychronakis Computers & Security 132 (2023) 103325

Fig. 1. Example of a control flow in Nginx that is missed by dynamic analysis. Ovals represent functions, while rectangles represent basic blocks. Dashed branches and blocks

are not executed during the training phase.

t

a

l

2

t

t

c

t

t

O

r

a

g

m

v

f

f

a

h

a

T

g

c

c

s

b

2

e

t

g

c

v

A

a

p

t

a

w

t

s

e

3

e

t

s

w

i

o

u

m

c

t

l

p

c

s

e

i

t

t

w

fi

t

p

o

t

a

a

t

t

n

c

e

a

y

f

y

t

c

b

he use of microservices. Each microservice can be configured as

 Docker image once, and then multiple instances of it can be

aunched.

.2. Seccomp BPF

User-space applications communicate with the OS kernel

hrough the provided set of system calls , i.e., a pre-defined API

hat allows access to specific kernel functionalities programmati-

ally. Most applications, however, typically need only a subset of

he available system calls to function properly, i.e., most applica-

ions do not make use of all the provided system calls.

Processes can invoke any of the system calls provided by the

S, as long as they have the necessary privileges to perform the

equested operation, regardless of their needs. This can be viewed

s a violation of the principle of least privilege, as allowing a pro-

ram to invoke more system calls than those it actually requires

ay aid an attacker in two main ways: i) a compromised (i.e., pre-

iously benign) process can invoke the extra system calls to per-

orm operations that the original program never intended to per-

orm; and ii) a malicious process may exploit kernel vulnerabilities

ssociated with those extra system calls, which otherwise would

ave been inaccessible.

Seccomp BPF (sec, 2023) is a subsystem of the Linux kernel that

llows processes to limit the set of system calls available to them.

he filters are defined using the BPF (Berkeley Packet Filter) lan-

uage, and can allow, deny, or log invocations of specific system

alls. To prevent time-of-check-time-of-use (TOCTOU) attacks, Sec-

omp BPF programs cannot dereference pointers (sec, 2023). Con-

equently, arguments passed to system calls can be restricted only

ased on their absolute values.

.3. Threat model

We consider attacks against the OS kernel (and other contain-

rs running on top of it) by an adversary who has gained access

o a container by exploiting a vulnerability in the container’s tar-

et application. The goal of our work is to reduce the adversary’s

hances of escaping from the container. We do not focus on pre-

enting the exploitation of applications running in the container.

ny additional defenses implemented in the application or the OS

re orthogonal to our approach, as we do not rely on any other

rotection mechanism to be in place (except Seccomp BPF).

Using Confine, attackers are restricted to a smaller set of sys-

em calls with fewer features, which in turn limits the function-

lity of exploit code. More importantly, kernel vulnerabilities that

ould have been exploitable through the invocation of certain sys-

em calls with certain arguments, now become unreachable. If the
3
ystem call that triggers a certain vulnerability is filtered, privilege

scalation (Li et al., 2017) and other attacks can be averted.

. The need for static analysis

Previous works (Rastogi et al., 2017a; 2017b; doc, 2023; Wan

t al., 2017) have used dynamic analysis to derive the list of sys-

em calls used by a container. However, dynamic analysis is not

ound, and thus can miss system calls along execution paths that

ere not exercised during the training phase. To demonstrate this

ssue, we manually analyzed Nginx and discovered three examples

f system calls that would be missed if only dynamic analysis were

sed. For our evaluation, we use Nginx with the Cache Manage-

ent and Auto Index features enabled.

Nginx spawns a separate cache-manager process to handle

ache management. This process clears the older cached files when

he cache is full using the unlink system call. Dynamically ana-

yzing Nginx would capture the initialization of the cache-manager

rocess, but would likely fail to capture the deletion of older

ached files, and therefore fail to capture the use of the unlink
ystem call. As the unlink system call is not invoked anywhere

lse during the normal execution of the program, relying on train-

ng alone would cause it to be marked as unused. Moreover, ex-

ending the training phase for a longer duration would not solve

he problem because the deletion of older files is triggered only

hen the cache is full. Training would need to request enough new

les to fill up the cache. Correctly setting up the training process

o handle such situations is thus challenging. Figure 1 shows the

arts of the control flow that are not discovered during training.

Another example of failure to capture a system call is the use

f lstat when displaying directory listings. Apart from this func-

ionality, lstat is not used in any other part of Nginx. As listing

 directory is usually triggered by users who manually type a URL,

nd not by following any existing URL on a website, it is unlikely

hat a training-based approach would be able to capture this sys-

em call.

In yet another case, the Nginx binary can be updated with a

ewer version without dropping client connections. The system

alls getsockopt and getsockname are used to hand over the

xisting socket connections to the new process, and are not used

nywhere else in the code, making it challenging for dynamic anal-

sis to discover them.

The above examples are indicative of the trade off between

ragility and overapproximation faced by dynamic and static anal-

sis. Relying on dynamic analysis alone would require the training

o be comprehensive enough to anticipate and capture all above

orner cases. In contrast, static analysis results are guaranteed to

e sound, but may include system calls that are never invoked by

M. Rostamipoor, S. Ghavamnia and M. Polychronakis Computers & Security 132 (2023) 103325

Fig. 2. Overview of Confine’s main processing steps. A one-time dynamic analysis phase that does not require any application-specific workloads is used for the sole purpose

of identifying the applications running in the container. Each application is then statically analyzed to identify all the library functions that it uses, and the system calls it

relies on, to generate a container-wide filter. Finally, a more restrictive application-specific filter is generated for the container’s target application.

c

w

c

4

a

c

f

a

o

t

w

t

s

t

t

f

p

n

p

t

a

f

f

v

c

c

t

o

4

p

s

p

f

c
t

t

n

a

t

d

fi

g

p

o

e

d

d

s

a

a

i

s

c

m

(

m

l

e

c

n

s

n

b

d

a

t

a

u

i

4

e

i

l

f

t

c

a

s

s

t

4

v

s

t

l

t

ertain workloads. As we aim for a practical and generic solution,

e opt for using static analysis to capture the superset of system

alls used by an application.

. Design

Our goal is to reduce the kernel attack surface available to an

ttacker of a container service by limiting the number of system

alls available to each container, which can potentially be of use

or malicious purposes (as a gateway to exploiting kernel vulner-

bilities). To achieve this, Confine “hardens” the container image

nce it has been fully configured by the user, by limiting its sys-

em call access at three levels. First, Confine generates a container-

ide system call filter that is applied to all programs launched in

he container. Then, given the fact that most containers execute a

ingle long-running program, it creates an application-specific sys-

em call filter that removes all system calls needed solely during

he initialization phase of the container. In its final step, Confine

urther restricts the remaining system calls needed by the main

rogram by limiting their argument values.

Identifying the system calls and their argument values that are

ecessary for the correct execution of the container and its main

rogram requires addressing the following requirements: 1) iden-

ify all applications that may run on the container; 2) identify

ll library functions imported by each application; 3) map library

unctions to system calls; 4) extract direct system call invocations

rom applications and libraries; and 5) extract hardcoded argument

alues for identified system calls.

Figure 2 presents a high-level overview of Confine’s main pro-

essing steps, discussed in detail in the rest of this section. Confine

urrently supports the popular Docker containers running on a na-

ive Linux-based host, but similar analysis could be performed for

ther container environments and operating systems.

.1. Identifying running applications

Although containers are usually specialized to run a single ap-

lication or service, they typically invoke many other utility and

upport programs prior to executing the main program. For exam-

le, the default MongoDB Docker image (mon, 2023) invokes the

ollowing supporting programs to set up the environment: bash ,
hown , find , id , and numactl . To generate container-wide sys-

em call policies, we must thus identify all programs that can po-

entially run during the lifetime of a container.

We can use different techniques to identify the programs run-

ing in a container: 1) Static analysis: extract all programs avail-

ble in the Docker image; 2) Dynamic analysis: launch con-

ainer and identify the programs it executes; and 3) Manual: the

eveloper/end-user provides the list of programs. If we use the

rst method and consider all the programs in a Docker image, the

enerated system call profile would suffer severely from overap-

roximation (i.e., filtering less than 80 system calls). Strictly relying
4
n the developer to provide the list of binaries also seems unnec-

ssary since a container typically executes the programs it requires

uring its initialization phase. Therefore, Confine relies on limited

ynamic analysis to capture the list of processes created on the

ystem. A profiling tool records every application launched within

 configurable time period (30 seconds by default) since the cre-

tion of the container—long enough to capture both system initial-

zation, as well as the “stable” state of the system. The obtained

et of applications is then used to derive the corresponding system

all policy.

However, since most programming languages give the program-

er the ability to launch applications using special library calls

e.g., execve) and those invocations might not occur during our

onitoring window, Confine may fail to analyze any executables

aunched in this way. For these cases, currently, the developer is

xpected to provide a list of binaries executed using such library

alls.

Our approach is different from previous works that rely on dy-

amic training using various workloads to derive a list of allowable

ystem calls (Wan et al., 2017). In our approach, the goal of the dy-

amic analysis is merely to identify the set of binary executables to

e analyzed—the system calls invoked by these programs are then

erived statically.

The above dynamic analysis is meant to be a convenient and

utomated way to carry out the batch analysis of multiple con-

ainer images. For containers that may include applications that

re not launched from the beginning, our system supports man-

ally provided external lists of executables that should be included

n the analysis.

.2. Static analysis

Dynamic analysis often fails to exercise all possible code paths,

specially when comprehensive workloads are not available dur-

ng training. To ensure complete code coverage, once we have the

ist of applications that are executed on the container, we per-

orm static analysis to extract the system calls that are needed for

he correct execution of each application. We combine the system

all requirements of all these identified applications to generate

 container-wide system call profile. Then, we use the extracted

ystem calls for the main program to generate an application-level

ystem call filter, and finally, restrict the system calls required by

he main program even further by limiting their argument values.

.2.1. System call identification

Libc Function to System Call Mapping User programs typically in-

oke system calls through the libc library, which provides corre-

ponding wrapper functions (e.g., the libc function read invokes

he system call SYS_read). Confine analyzes the source code of

ibc to derive a mapping between exported functions and the sys-

em calls they invoke. For the rest of the programs and libraries

M. Rostamipoor, S. Ghavamnia and M. Polychronakis Computers & Security 132 (2023) 103325

o

b

t

v

t

c

f

a

m

f

a

t

c

t

e

d

I

l

c

a

i

s

u

u

t

4

i

t

fi

y

v

v

t

t

s

i

s

c

i

p

s

c

a

o

v

t

i

v

f

g

t

t

c

p

m

t

y

m

i

T

w

p

t

d

t

o
o

m

g

t

c

m

a

g

i

t

t

a

g

a

o

t

f

i

t

c

a

d

i

o

t

c

C

r

s

w

_
e

_
c

w

_
a

4

4

t

t

c

t

h

n a given container, however, Confine only needs to analyze their

inaries .

A libc function may have multiple control flow paths to the ac-

ual system call. To correctly identify which system calls are in-

oked by a given libc function, we thus need to analyze these con-

rol flow paths. To that end, Confine statically analyzes the source

ode of libc to derive its full callgraph, and accurately map each

unction to its respective system calls.

Function pointers are used widely in libc. However, performing

ccurate points-to analysis has significant scalability and perfor-

ance issues (Andersen, 1994; Hind, 2001). To avoid having to per-

orm points-to analysis, we follow a more conservative approach

nd retain all system calls that are invoked through any function

hat has its address taken. In Section 5.1 we discuss the technical

hallenges we encountered during this process.

Having an accurate mapping between libc functions and sys-

em calls, it is then straightforward to analyze each program (main

xecutable and libraries), identify all imported libc functions, and

erive the set of all possible system calls the program may invoke.

t is important to stress that this phase is performed only once per

ibc version —the derived mapping is then saved and used across all

ontainers.

Direct System Call Invocation In addition to using libc wrappers,

pplications and libraries may also invoke system calls directly us-

ng the syscall() function, or using the syscall assembly in-

truction. Although the number of applications and libraries which

se this approach are limited, for the sake of completeness, we

se binary code disassembly to extract any directly invoked sys-

em calls. We describe in detail this process in Section 5.2 .

.2.2. System call argument concretization

We further reduce the exposed kernel attack surface by restrict-

ng the values that may be passed as arguments to system calls

hat cannot be filtered. To derive concrete argument values, Con-

ne performs intra-procedural reaching definitions data flow anal-

sis, starting from each argument at each invocation site. When the

alue passed to a given argument can be identified across all its in-

ocation sites of the respective system call, then Confine concretizes

his argument by allowing only the given value (or set of values)

o be passed. As discussed in Section 2.2 , Seccomp BPF does not

upport pointer dereferencing, which prevents us from concretiz-

ng pointer arguments. Given this limitation, Confine strives to re-

trict flags and constant arguments, which fortunately are quite

ommon.

For direct system call invocations, reaching definitions analysis

s performed on each of the six CPU registers that may be used to

ass constant arguments, starting right before the syscall as-

embly instruction. 1 For libc function call sites, we identify two

ases. While an important subset of libc functions are wrappers,

cting as a simple interface for invoking individual system calls,

ther more complex libc functions (e.g., printf()) internally in-

oke several system calls to carry out the intended operation.

Libc Wrapper Functions Most libc wrapper functions merely copy

heir arguments (from the wrapper’s call site) and the correspond-

ng system call number to the appropriate registers, and then in-

oke the system call. Reaching definitions analysis is thus per-

ormed at the call sites of wrapper functions to identify their ar-

ument values. In most cases, there is a one-to-one mapping be-

ween the arguments of a wrapper and the arguments of the sys-

em call it internally invokes, but this is not always the case. To ac-

urately derive this mapping, Confine performs (a one-time) intra-

rocedural data flow analysis to identify how libc wrapper argu-

ents flow into the internal system call invocation site.
1 Confine currently supports only the x86-64 ABI, in which arguments are passed

hrough registers.

c

a

a

5
Among the exceptions we identified as a result of this anal-

sis, the clone() libc function modifies the order of the argu-

ents prior to invoking the respective system call, while fork()
nvokes the clone system call with hardcoded argument values.

he mmap() function invokes its respective system call twice, once

ith a set of hardcoded values, and a second time with the values

assed to the wrapper function.

Complex Libc Functions Some libc functions lead to the invoca-

ion of several system calls, the arguments of which often do not

epend on the function’s arguments. For example, fgets() in-

ernally invokes several system calls, including mmap , write , and

penat . To handle these cases, Confine could treat libc as any

ther opaque binary executable and identify the hardcoded argu-

ents of these internal system calls irrespectively of whether a

iven control flow path will actually be executed. This would lead

o a less restrictive argument-level filter due to the inclusion of

ontrol flow paths that invoke system calls with concretized argu-

ents, which though are only accessible from libc functions that

re not imported (i.e., used) by the application or its libraries.

Recall though that for libc we do have a more accurate call-

raph, extracted at the source code level as a result of system call

dentification (Section 4.2.1). Confine thus leverages this callgraph

o increase the accuracy of argument concretization by identifying

he exported functions from which these control flow paths can

ctually be executed, and includes their concretized system call ar-

uments only in case those functions are imported by the main

pplication or its libraries.

For each internal path leading to a system call (either direct

r through a wrapper function), we traverse the path to identify

he function that invokes the system call. After identifying this

unction, we perform the same reaching definitions analysis start-

ng from its call site to identify the passed argument values. Al-

hough we do assume that the source code of libc is available (for

allgraph extraction), our data flow analysis implementation oper-

tes at the binary level, and thus Confine performs the reaching

efinitions analysis of complex libc functions at the binary level—

mplementing the same analysis at the source code level would not

ffer any significant advantage in terms of accuracy. In most cases,

he values of constant arguments are hardcoded at these internal

all sites, and can be easily identified by our analysis. Therefore,

onfine considers these concretized argument values only if the

espective libc function is actually called by the target application.

As an example, the following path extracted from the callgraph

hows how the fgets function internally calls the __mmap
rapper function: fgets → __libgcc_s_init → __libc_fatal →

libc_message → __mmap → __mmap64 → mmap . Confine is able to

xtract concrete values for the non-pointer arguments of the

_mmap wrapper function (prot and flags) by analyzing its

all site within the _libc_message function (__mmap is a

eak alias of the mmap wrapper, while __mmap64 is inlined;

_libgcc_s_init, __libc_fatal, and _libc_message
re internal, non-exported functions).

.3. Hardening the container image

.3.1. Container-wide filter enforcement

Docker containers support the use of Seccomp filters to limit

he system calls accessible from the container. The user can launch

he container with a custom ruleset which specifies the system

alls that can be accessed by the container. This ruleset can be ei-

her in the form of a deny-list or an allow-list of system calls pro-

ibited or permitted. For Confine, we use an allow-list of system

alls that the container is permitted to invoke, blocking the rest.

Based on the analysis performed in Sections 4.1 and 4.2 , we use

n automated script to derive the list of prohibited system calls,

nd construct the corresponding Seccomp profile.

M. Rostamipoor, S. Ghavamnia and M. Polychronakis Computers & Security 132 (2023) 103325

Fig. 3. Many of the system calls required during a container’s initialization phase are not needed by the main long-running application (mysqld in this example) and thus

can be filtered.

4

g

g

e

e

a

e

p

a

fi

t

a

w

s

c

d

m

s

p

c

t

t

e

t

t

i

w

i

p

p

p

k

5

S

i

g

p

f

r

l

v

m

N

i

t

i

m

5

q

a

H

g

g

T

u

a

a

f

(

i

e

m

b

m

t

c

x

c

b

i

t

t

l

s
w

t

a

n

t

t

T
w

.3.2. Application-specific filter enforcement

While it is common for a container to execute different pro-

rams to prepare the environment, it finally ends up running a sin-

le target application that carries out the container’s main task. For

xample, as shown in Figure 3 , the MySQL container (doc, 2023a)

ventually runs mysqld after executing mkdir , find , mktemp ,
nd several other programs. While previous works (Ghavamnia

t al., 2020a; Wan et al., 2017) generate a container-wide Seccomp

rofile for the entire container, we show that many system calls

re only required for setting up the container, and can be safely

ltered once the main program is ready to be launched.

In its final step, Confine generates a Seccomp filter tailored to

he container’s target application. Since Docker does not provide

 mechanism to install new filters after the container is launched,

e must use a non-intrusive mechanism to apply the application-

pecific filter. Although it is possible to change an installed Sec-

omp BPF program by modifying the Linux kernel (Lei et al., 2017),

eploying such a technique would introduce significant deploy-

ent hurdles, and is therefore not ideal. Another approach is to in-

tall the application-specific filter upon launching the program by

atching the target binary and direct its entry point to our added

ode that installs the application-specific filter. Another alterna-

ive would be LD_PRELOAD (ld-, 2023), which can also be used

o hook the main function of the binary.

Instead of these more intrusive approaches, Confine uses an

asy-to-deploy mechanism that installs the application-specific fil-

er through a small “proxy” C program, which in turn executes the

arget program. To that end, Confine modifies the container initial-

zation script to replace the main target program (e.g., mysqld)
ith Confine’s proxy program, without altering the original initial-

zation process. When the container attempts to execute the target

rogram, Confine’s proxy program is launched instead, at which

oint it installs the filter and then executes the actual target ap-

lication. Using this approach, neither the program binary nor the

ernel or the Docker daemon need to be modified.

. Implementation

To capture a trace of all invoked executables, Confine leverages

ysdig (sys, 2023) to monitor the execve calls made during the

nitial 30 seconds (configurable value) of the container. After it

enerates the list of programs the container runs, Confine further

erforms static analysis to extract the list of system calls necessary

or the correct execution of the container.

To generate an application-specific filter, Confine must sepa-

ately analyze the system call requirements of a container’s main

ong-running program. Confine currently relies on the user to pro-

ide the name of this program. The application name typically
6
atches the name of the Docker image (e.g., the Nginx image runs

ginx as its main application). We plan to implement automated

dentification as part of our future work, as the main application is

he last one in the execution chain that remains running after the

nitialization phase, and can thus be easily identified in an auto-

ated way.

.1. Mapping libc functions to system calls

To ensure correctness, a precise libc function callgraph is re-

uired to identify and filter unused system calls. Based on our

nalysis of the top 100 most popular Docker images from Docker

ub (doc, 2023a), we found that all containers use the popular

libc library as their main user-space libc library. Therefore, we use

libc to build a mapping between its functions and system calls.

his is a one-time effort, and after we build the mapping, Confine

ses it to analyze the system call requirements of each container.

Glibc heavily relies on multiple GCC (gcc, 2023) features that

re not implemented in LLVM. Due to this issue, we implemented

 second analysis pass to extract the callgraph and system call in-

ormation from glibc, based on GCC’ register translation language

RTL) intermediate representation (IR). Our callgraph extraction

mplementation is based on the Egypt tool Gustafsson , which op-

rates on GCC’s RTL IR. We discovered that there are three main

echanisms through which glibc invokes system calls, explained

elow.

System Call via Inline Assembly and Assembly Files This is the

ost straightforward mechanism for invoking system calls. Func-

ions such as accept4() , which is responsible for accepting in-

oming socket connections, contain inline invocations using the

86-64 syscall instruction. Given the source code, the Egypt tool

onstructs the function callgraph for any given application or li-

rary. We augmented Egypt to iterate over every call instruction

n the RTL IR and record any native x86-64 syscall instruc-

ion. Similarly, assembly files may also contain syscall instruc-

ions. Therefore, Confine performs code analysis at the assembly

anguage level to identify all direct syscall instructions.

System Call Wrapper Macros In addition to directly using the

yscall instruction, glibc also uses macro expansion to generate

rappers to system calls. Other glibc routines use these wrappers

o invoke system calls. Because these wrappers are implemented

s architecture-dependent (in our case x86-64) macros, they can-

ot be retrieved by analyzing the RTL IR. Moreover, the parameters

o these macros are provided by a bash script during compilation

ime.

The syscall-template.S file contains the macros

_PSEUDO , T_PSEUDO_NOERRNO , and T_PSEUDO_ERRVAL ,
hich define wrappers to system calls. The list of system calls

M. Rostamipoor, S. Ghavamnia and M. Polychronakis Computers & Security 132 (2023) 103325

t

b

s
r

m

i

b

t

t

d

t

w
G

s

fi

a

f

i

n

a

5

p

u

i

C

o

i

s

t

5

A

f

I

c

j
r

v

fi

i

g

F

t

a

c

f

b

v

d

t

t

u

m

s

v

i

c
e

w

c

r

t

t

t

a

p

g

A

a

y

fi

d

b

r

t

C
s

i

a

m

h

C
m

d

f

v

m

s

p

m

c

o

t

c

l

o

e

u

c

t

o

t

b

d

c

c

b

u

t

a

o

5

a

m

d
s

o be generated, along with other information, such as sym-

ol names and the number of arguments, are provided in the

yscalls.list file. The Bash script make-syscalls.sh
eads this file at compilation time, generates the correct

acro definitions, and invokes the expansion of the macros

n syscall-template.S . This script is invoked as part of the

uild process of glibc. During the compilation of glibc, we trace

he execution of this script and record the relevant macro defini-

ions observed during its execution. Using these macros and macro

efinitions, we derive the mappings between these wrappers and

heir respective system calls.

Weak Symbols and Versioned Symbols Glibc uses the

eak_alias macro to define weak symbols for functions.

CC supports symbol versioning, and glibc uses this feature to

upport multiple versions of glibc. The versioned symbols are de-

ned using the macro versioned_symbol . Both weak_alias
nd versioned_symbol provide aliases for functions. Other

unctions within glibc, as well as the applications using glibc, can

nvoke these aliased functions either through the original function

ame or its alias. We analyze the C source code to extract these

liases, and add them to the callgraph.

.2. Binary analysis

Confine uses the Angr framework (Shoshitaishvili et al., 2016) to

erform binary code analysis for two main purposes. First, Confine

ses Angr to identify the libc functions that are imported by all the

nvoked programs and all their libraries. Second, Confine uses the

FGFast analysis of Angr to extract the control flow graph (CFG)

f the executables and their libraries. Confine relies on this CFG to

dentify all the invocation sites of libc wrapper functions and direct

ystem calls, and then to perform reaching definitions analysis on

heir arguments to concretize their values.

.2.1. Data flow analysis

Confine leverages the Function Manager object (created by

ngr during function recovery) to extract the basic blocks of each

unction, and analyzes Angr’s intermediate representation (VEX

R) to identify direct system call invocation sites and function

all sites. The IR supports six types of jumps, represented by the

umpkinds enum. Among the six, Confine uses the two that cor-

espond to function calls (Ijk_Call) and direct system call in-

ocations (Ijk_Sys). From the identified function call sites, Con-

ne only considers those that target a glibc wrapper function or

ts weak aliases. It selects them by comparing the call site tar-

et addresses with the glibc function addresses collected by the

unction Manager .
After identifying all function call sites and system call invoca-

ion sites, Confine performs backwards intra-procedural data flow

nalysis to derive concrete values for the arguments passed at each

all site. It employs the reaching definitions analysis pass of Angr

or this purpose. This analysis requires an observation point to

e defined for each register that is used for passing an argument

alue. The analysis then extracts the address where each register is

efined (CodeLoc) along with its possible value(s). For example,

o identify the system call number of a direct system call invoca-

ion, Confine defines an observation point for the rax register. We

se the same technique to perform a one-time analysis of glibc for

apping the arguments of wrapper functions to their respective

ystem call arguments, and for identifying system call argument

alues used by complex glibc functions.

It is worth noting that Angr had limited support for some

nstructions encountered in the programs of our data set (e.g.,

mpxchg). We resolved this issue by extending its VEX execution

ngine and implementing separate handlers for these instructions.
7
Wrapper Function Argument Mapping Within a wrapper function,

e must ensure that its arguments flow unmodified to the system

all invocation site. Since wrapper functions directly invoke their

espective system call (without calling any other internal func-

ions), performing intra-procedural analysis for them is sufficient

o ensure that the mapping holds.

Confine uses Angr to analyze glibc wrapper functions and iden-

ify any modifications to the passed argument values before they

re supplied to the corresponding system call. An observation

oint is defined for each register used to pass a system call ar-

ument, on which reaching definitions analysis is then performed.

lthough the analysis attempts to identify the final instruction that

ssigns a value to the register (as well as the value itself), the anal-

sis may fail depending on whether the register is used or modi-

ed within the function.

If the register is not used nor modified in the function, Angr

oes not return a valid output, which means that the register will

e assigned a value that flows in from the wrapper’s caller. If the

egister is used but not modified in the function, the analysis re-

urns Undefined as the value of the register, and External for

odeLoc (the address of the location where the register is as-

igned). This output indicates that although the register is used

n the function (e.g., to perform a comparison), its value again is

ssigned outside the function. In both these cases the one-to-one

apping between the wrapper’s and the system call’s arguments

olds.

If the register is modified inside the function, the returned

odeloc is an address inside the function, and the one-to-one

apping does not hold. In that case, a new observation point is

efined on that address, and reaching definition analysis is per-

ormed again. This process continues recursively until either i) the

alue with which the register is initialized is reached, i.e., argu-

ent value is hardcoded within the function; or ii) the recur-

ive analysis returns Undefined , which means that the value is

assed to the wrapper by the caller, i.e., the order of the argu-

ents is modified by the wrapper prior to invoking the system

all. For example, the clone() wrapper function moves the value

f the r8 register (the fifth argument of the wrapper function) to

he rdx register before invoking the clone system call. In such

ases, Confine modifies the mapping accordingly.

Complex Glibc Functions As mentioned in Section 4.2.2 , complex

ibc functions often internally invoke several system calls (direct

r through libc wrappers). Confine uses the glibc callgraph to map

ach complex function to the system calls it may invoke, and then

ses binary analysis to concretize their arguments. Since the glibc

allgraph is generated by analyzing the source code, there are func-

ions in the callgraph that do not exist in the final library due to

ptimizations (e.g., function inlining). To minimize this inconsis-

ency, we compile glibc using the lowest optimization level possi-

le, so that the resulting binary code has the highest correspon-

ence with the callgraph.

To reduce Confine’s analysis time and improve usability, we use

aching of intermediate analysis results extensively. For each en-

ountered glibc version used by a container, the derived mapping

etween glibc functions, their system calls, and their argument val-

es, is generated only once, and is then stored for future use when

he same glibc version is encountered in another container. This

llows Confine to skip this part of the analysis most of the time

nce a diverse-enough set of glibc versions has been encountered.

.2.2. Dynamically loaded libraries

An issue that requires special consideration is dynamic loading,

 mechanism through which applications can load modules on de-

and throughout their execution. The dlopen() , dlsym() , and

lclose() API functions are used to load a library, retrieve its

ymbols, and close it, respectively. Because these operations are

M. Rostamipoor, S. Ghavamnia and M. Polychronakis Computers & Security 132 (2023) 103325

Listing 1. Example of a Docker Seccomp ruleset file.

p

i

s

t

t

b

l

l

/
e

l

a

H

d

t

o

5

a

a

t

q

o

t

b

s

s
t

n

fi

t

5

L

s

c

c

a

5

s

t

p

p

g

n

i

g

c

m
s

d

fi

c

i

t

t

i

m

q

fi

e

c

f

t

o

o

C

m

i

e

c

t

t

p

i

t

c

a

a

t

d
i

g

L

erformed at runtime, any libraries loaded in this way cannot be

dentified by looking at the application’s ELF binary header. For in-

tance, Apache Httpd uses this feature to load libraries based on

he user-defined configuration. Quach and Prakash (2019) showed

hat only around 3% of the 3174 programs and 2% of the 4292 li-

raries analyzed in their dataset used these features, all of which

oaded the required libraries during initialization.

To identify such dynamically loaded libraries, we monitor the

ist of libraries loaded by the application at runtime through the

proc virtual file system, which provides this information for ev-

ry process.

One consideration is that if an application dynamically loads

ibc, we cannot identify the individual functions imported by the

pplication, and would have to retain all system calls made by libc.

owever, it is unlikely that libc will be loaded in this fashion, as

ynamic loading is used for modules that provide additional func-

ionality to the application. We did not encounter any such case in

ur experiments.

.3. Seccomp profile generation

Confine automatically generates Seccomp policies by classifying

ll system calls present on the final list of required system calls

s “permitted,” and assigning them to an allow list, denying any-

hing not provided in this list. The Docker Seccomp ruleset re-

uires the name of the allowed system calls, while our analysis

f the containers generates system call numbers. Confine maps all

he available system calls in the kernel to their respective num-

er by using the symbol information related to the names of the

ystem calls from the procfs pseudo-filesystem. Based on the

ys/syscall.h header file, Confine maps the system call name

o its number, and uses it to convert the permitted system call

umbers to their names. Finally, Confine creates the Seccomp pro-

le with an allow list containing these system calls and applies it

o the container.

.3.1. Container-wide filter enforcement

Docker uses a JSON file to define the permitted system calls.

isting 1 shows a sample ruleset which only allows the pwrite64

ystem call. The default action for this ruleset is to deny all system

alls, except those specified under the syscalls tag. Each system

all is specified by three arguments: its name, the action, and its

rguments.

.3.2. Application-specific filter enforcement

As discussed in Section 4.3.2 , we use a “proxy” C program to in-

tall Confine’s application-level Seccomp profile. This program uses
8
he prctl system call to install the updated filter on the current

rocess, and then invokes the target binary as part of the same

rocess using the execve system call. We compile the proxy pro-

ram statically to avert any failures due to library dependencies

ot available in the container. This would mainly happen in Docker

mages in which the programs have been statically linked with

libc. Our proxy program itself requires a limited set of system

alls to install the application-specific filter (exit_group , brk ,
map , munmap , write , fstat , and execve). Note that these

ystem calls are required by most programs (24 containers in our

ataset), and not filtering them does not reduce the security bene-

t. We provide a more detailed discussion regarding these system

alls and how their inclusion affects the security benefit of Confine

n Section 7 .

After we generate our Seccomp installation program, we need

o modify the container to execute it instead of the main applica-

ion, preferably without rebuilding the Docker image. Each Docker

mage is built based on a Dockerfile . This file includes the infor-

ation required to launch a container running the applications re-

uested by the creator of the image. One of the variables speci-

ed in this file is the entrypoint , which specifies the program to be

xecuted upon launching the container. Most Docker images typi-

ally use a bash script as their entrypoint. This script usually per-

orms operations needed to prepare the filesystem or general set-

ings (e.g., add a user, create a directory) for the correct execution

f the final target program. We need to replace this script with

ur own custom-built script, which performs operations needed by

onfine and then invokes the original script.

Confine’s custom script performs the following operations: 1)

akes a backup of the main target binary; 2) overwrites the orig-

nal binary with our proxy program; and 3) executes the original

ntrypoint script. There are two ways to modify the entrypoint of a

ontainer: change the Dockerfile and rebuild the image, or change

he entrypoint temporarily when the container is launched. We use

he second option, which is less intrusive and can be easily ap-

lied to any Docker image, without having to worry about rebuild-

ng the image itself. For example, the Nginx Docker image uses

he docker-entrypoint.sh script as its entrypoint, which exe-

utes the arguments passed to the container in its final step. These

rguments are usually the name of the main binary along with

ny arguments it may require. We modify the entrypoint at run-

ime to execute our specially crafted script and then execute the

ocker-entrypoint.sh script available in the original Docker

mage.

In cases where the Docker image does not have any bash pro-

ram available to execute scripts (e.g., images based on Alpine

inux) and the main program is executed instead as the entrypoint,

M. Rostamipoor, S. Ghavamnia and M. Polychronakis Computers & Security 132 (2023) 103325

w

l

6

s

u

a

a

s

l

c

s

g

i

a

s

e

i

t

l

t

o

t

t

t

o

t

t

D

a

w

l

S

m

c

e

a

i

fi

p

c

w

t

c

6

t

a

t

t

t

n

a

d

v

a

c

Fig. 4. Cumulative distribution of the number of filtered system calls as a percent-

age of all tested Docker containers for container-wide and application-specific sys-

tem call filtering. Application-specific filtering increases the average number of fil-

tered system calls by 25%.

t

o

n

t

k

o

c

c

o

a

t

s

o

f

t

f

i

s

a

r

P

i

c

t

t

a

I

d

i

b

l

s

t

b

w

w

t

w

6

c

e modify the entrypoint (using the runtime option) to directly

aunch our proxy program.

. Experimental evaluation

To assess the security benefits of Confine, we used a base Linux

ystem with kernel v5.4, which provides 335 system calls. We eval-

ated Confine with 27 publicly available Docker container images

vailable from Docker Hub (doc, 2023a). Due to the nature of our

pplication-specific system call filtering technique, we did not con-

ider Docker images which are meant to be used as vanilla instal-

ations for other applications to build upon. When launched, these

ontainers either do not run any program at all, or only execute a

hell. Instead, we only apply Confine to containers that run a tar-

et long-running application, in which the initialization and post-

nitialization phases actually differ. Also, we do not consider im-

ges in which the main application is a Golang binary, as they are

tatically linked, and as a result, the argument values cannot be

xtracted by performing our intraprocedural analysis at system call

nvocation sites.

We ended up with these 27 Docker images after evaluating the

op-100 official Docker images available on Docker Hub, and se-

ecting the ones that i) execute a single target application (other

han bash); ii) do not require any manual registration or payment

n Docker Hub; and iii) are compatible with Angr for extracting

he CFG for the invoked programs and its libraries (we encoun-

ered just four images for which Angr failed to extract the CFG of

he main executable).

We only analyzed the top-100 official Docker images available

n Docker Hub because as we mentioned in Section 5 , we require

he developer to provide the name of the final binary to generate

he application-specific filter. Therefore, we analyzed the top-100

ocker images to reduce the manual effort required.

To ensure that the generated system call policies do not break

ny functionality, we performed additional validation runs. First,

e check if the container does not exit abrubtly when being

aunched with the specified Seccomp profile. As we mentioned in

ection 5.3 , the Dockerfile specifies the application the container

ust invoke upon launch. If this application exits (or crashes), the

ontainer exits, and thus we verify that this does not happen.

Even if the application remains running, however, it might still

ncounter errors. For example, it might encounter exceptions that

re gracefully handled by the application, but still cause problems

n its correct operation. To capture these cases, we check the log

les generated by the container. Docker provides a streamlined

rocess of reading the logs produced by the containerized appli-

ation. We compare the logs produced by the hardened container

ith the default container. Because values in the logs, such as

imestamps and process IDs, might differ between different exe-

utions, we ignore these values.

.1. Filtered system calls

First, Confine automatically analyzes each container and ex-

racts the list of system calls required by its binaries based on the

nalysis described in Section 5.2 . Then, it generates a Seccomp fil-

er to prohibit the use of all remaining system calls. Finally, we run

he container on a Docker Engine, along with our filter, to validate

he correctness of our analysis.

We assess the effectiveness of our approach by measuring the

umber of filtered system calls per container. Each system call is

n entry point to some kernel functionality, and thus completely

isabling a system call is equivalent to preventing the exposure of

ulnerabilities in all relevant code of that kernel functionality (in

ddition to prohibiting the use of that system call as part of mali-

ious code)—we have measured the degree of attack surface reduc-
9
ion in terms of known CVEs that become neutralized and present

ur results in Section 6.3 . We leave the actual removal of the ker-

el code related to each system call as part of our future work, but

he number of filtered system calls is indicative of the amount of

ernel code that could potentially be removed.

Figure 4 shows the cumulative distribution of the number

f removed system calls across all containers in our dataset for

ontainer-wide filtering and application-specific filtering. Confine

an filter 144 system calls or more for half of the Docker images in

ur dataset across the entire container. By differentiating between

 container’s requirements during its initialization phase and af-

er it starts executing the target application, Confine’s application-

pecific filtering proves to be quite effective, increasing the number

f filtered system calls further, by 25% on average. As an example,

or the Nginx (doc, 2023c) and Apache Httpd (doc, 2023b) con-

ainers, applying container-wide filtering disables 159 system calls

or Nginx and 176 for Apache, while application-specific filtering

ncreases the number of filtered system calls to 204 and 203, re-

pectively.

As shown in Figure 5 (bottom two segments of each bar),

pplication-specific filtering is more effective for containers that

un many programs during their initialization phase. For example,

ostgres (doc, c2023e) and Percona (doc, 2023d) have the highest

ncrease in the number of filtered system calls (63% and 51%), be-

ause both rely on many utility programs (e.g., mkdir , awk , cat)
o set up the container environment for the correct execution of

he main program. In contrast, Julia (doc, 2023a) does not have

ny initialization scripts and directly executes the main program.

ts slight increase in the number of filtered system calls (4%) is

ue to the requirements of the Docker runtime itself, which still

nvokes a few system calls needed to launch the container that can

e safely filtered afterwards.

Confine’s application-specific filter generation process fol-

ows an approach similar to previous works that generate

ystem call filters for binary executables, such as Sysfil-

er DeMarinis et al. (2020) . However, Sysfilter fails to analyze li-

raries that are not compiled with debug symbols. Since there

ere libraries in our dataset that did not contain debug symbols,

e were not able to perform a complete comparison with Sysfil-

er. Furthermore, Sysfilter does not restrict system call arguments,

hich is one of the contributions of our work.

.2. Restricted system call arguments

Restricting the allowable argument values of system calls that

annot be filtered entirely still contributes in disabling parts of a

M. Rostamipoor, S. Ghavamnia and M. Polychronakis Computers & Security 132 (2023) 103325

Fig. 5. Number of disabled system calls by container-wide (bottom part) and application-specific (middle part) filtering, and of restricted system calls by argument con-

cretization (top part).

s

r

G

t

s

c

fi

c

t

a

c

l

t

p

g

r

i

c

a

a

a

a

m

s

e

a

l

f

t

b

t

f

t

fl

u

r

o

g

m

a

c

b

P

w

g

c

a

i

g

6

s

p

c

w

2

e

c

c

k

c

t

i

o

b

a

b

c

c

q

b

a

i

T

t

fi

u

6

s

a

G

r

p

ystem call’s crucial functionality. Currently, Confine attempts to

estrict 145 different constant arguments across 118 system calls.

iven that Confine’s argument value inspection relies on conserva-

ive, best-effort static analysis at the binary level, only a subset of

ystem calls can be handled—those that conform to the following

onditions: i) have at least one constant argument; ii) remain un-

ltered across the majority of containers; and iii) their arguments

an be mapped to the corresponding Libc functions.

Going back to Figure 5 , the topmost segment of each bar shows

he number of restricted (but not filtered) system calls for which

t least one argument can be concretized. Confine restricts 421

onstant arguments across the 27 containers. For example, Confine

imits the request argument of the ioctl system call in 24 con-

ainers. The Linux header file < sys/ioctl.h > contains several

redefined values for the request argument. Concretizing this ar-

ument results in the neutralization of most kernel vulnerabilities

elated to built-in or additional devices. CVE-2019-6974 (cve, 2019)

s such a use-after-free vulnerability in the KVM hypervisor that

an be triggered by calling ioctl with KVM_CREATE_DEVICE as

n argument—one of the argument values that Confine prohibits

cross all 24 containers.

Other examples of restricted arguments include: the level
nd optname arguments of setsockopt and getsockopt
cross 10 and 16 containers, respectively, and the flags argu-

ent of clone and mmap across 27 and 4 containers. More

pecifically, for mmap , the flags argument can take 22 differ-

nt values, which can also be combined with each other through

 bitwise OR. Among these values, Confine disables nine, and al-

ows only some combinations of the remaining 13 values in the

our containers where mmap is restricted. Furthermore, among

he disabled protocols for the socket system call is IPsec, set

y the NETLINK_XFRM flag, which is filtered across seven con-

ainers. This flag is associated with a heap buffer overflow flaw

ound in IPsec, which may lead to a local privilege escalation at-

ack (cve, 2012). Also, the clone system call accepts 53 different

ags and signals, but the 27 evaluated containers use only three

nique combinations of them. Consequently, most vulnerabilities

elated to clone (cve, 2012; 2013) can be neutralized as a result

f Confine’s argument concretization.

The Perl container has the lowest number of concretized ar-

uments due to breadth and flexibility of the Perl API, as imple-

ented in the libperl.so library. For example, setsockopt
nd ioctl cannot be restricted because their argument values

annot be identified in just one call site for each of them in this li-

rary. These call sites are located in the Perl_pp_ssockopt and

erl_pp_ioctl functions, respectively, the arguments of which
10
ill become available only at runtime, depending on the user pro-

ram that will invoke them. Language-level analysis of Perl scripts

ould be used to identify those argument values, but this type of

nalysis is beyond the scope of our work. We further discuss the

mplications of performing this analysis for dynamically-typed lan-

uages in Section 7 .

.3. Security evaluation

System calls are the main entry point into the kernel. While

ecurity-critical system calls are typically used as part of ex-

loit payloads (Mishra and Polychronakis, 2020), any system call

an be used to exploit a vulnerability in the kernel. Previous

orks (Kemerlis, 2015; Kemerlis et al., 2014; 2012; Pomonis et al.,

017) have shown that malicious users can attack the kernel and

ither leak sensitive data or perform privilege escalation. In most

ases, these attacks are performed by exploiting vulnerabilities ac-

essible through system calls. Consequently, when considering the

ernel’s attack surface, all system calls have potential for a mali-

ious user.

To demonstrate the security benefit of Confine, we measure

he additional Linux kernel vulnerabilities mitigated due to filter-

ng or restricting system calls. We consider vulnerabilities instead

f proof-of-concept (PoC) exploits, because each vulnerability can

e used by different PoCs. Mitigating a single vulnerability breaks

ll PoCs that leverage it, while preventing any single PoC may not

reak the rest. To that end, we need to identify vulnerabilities that

an be exploited through the invocation of one or more system

alls, and whether any specific system call argument value is re-

uired for a successful exploitation. We built a two-level mapping

etween system calls and vulnerabilities as follows. First, to derive

 coarse-grained mapping, we scrape patches assigned to CVEs to

dentify the functions that hold the root cause of a vulnerability.

hen we use the Linux kernel callgraph to identify from which sys-

em calls the vulnerable code can be accessed. Second, we derive a

ne-grained mapping that considers the system call argument val-

es that must be used to exploit an accessible vulnerability.

.3.1. Coarse-grained syscall to CVE mapping

To perform our analysis, we crawled the CVE web-

ite (cve, 2023c) for Linux kernel vulnerabilities using a custom

utomated tool. The tool parses each commit in the Linux kernel’s

it repository to find the corresponding patch for a given CVE, and

etrieves the relevant file and function that was modified by the

atch. After mapping CVEs to their respective functions, we built

M. Rostamipoor, S. Ghavamnia and M. Polychronakis Computers & Security 132 (2023) 103325

t

e

K

t

t

b

t

c

a

s

K

r

T

s

C

r

m

s

n

g

P

p
t

t

u

u

w

t

s

6

f

r

f

o

t

f

n

e

s

t

a

c

w

i

w

F

c

c

t

w

P

c

a

e

n

a

a

a

s

i

t

o

C

w

7

t

(

w

t

t

t

e

w

a

s

l

f

d

c

v

c

l

p

a

W

t

m

t

t

i

p

c

H

m

e
l

w

t

c

S

e

l

e

t

e

a

a

t

t

t

a

a

w

p

o

i

t

p

he Linux kernel callgraph and analyzed which parts of it can be

xclusively accessed by a given system call.

We constructed the Linux kernel’s callgraph using

IRIN (Zhang et al., 2019). This allows us to map which func-

ions in the kernel are invoked from which system call, and

herefore reason about which part of the kernel’s code will never

e invoked when a set of system calls are filtered. We discovered

hat while there are only a few CVEs directly associated with the

ode of filtered system calls, many CVEs are associated with files

nd functions that are invoked exclusively by the code of filtered

ystem calls. By matching the CVEs to the callgraph created by

IRIN, we were able to pinpoint all the vulnerabilities that are

elated to the set of system calls filtered by a given container.

his provides us with a quantifiable property to assess the attack

urface reduction achieved by our method, i.e., the number of

VEs that would have been neutralized for a given container, if the

espective system call policy generated by Confine was applied.

Based on our coarse-grained analysis, in addition to the 25 CVEs

itigated by Docker’s default Seccomp policy, 20 CVEs across all

tudied containers are effectively removed (i.e., the respective vul-

erabilities cannot be triggered by the attacker) by applying our

enerated policies. One example is the recently disclosed “Dirty

ipe” vulnerabilty (cve, 2022) which is mapped to the splice and

ipe system calls. An unprivileged local user could use this flaw

o write to the page cache of a read-only file (e.g., /etc/passwd)
o escalate their privileges in the container. Then they could mis-

se this privilege to escape the container and gain access to the

nderlying host. Confine increases the number of containers in

hich this system call is filtered from 19 for container-wide fil-

ering (Ghavamnia et al., 2020a), to 26 by applying application-

pecific filtering.

.3.2. Fine-grained syscall to CVE mapping

The coarse-grained CVE-to-system call mapping is not enough

or assessing the added benefit of system call concretization. To

eason whether disabling part of a system call’s functionality af-

ects the exploitability of a given vulnerability, we gathered at least

ne proof-of-concept exploit per CVE, and manually studied how

he essential system calls and their arguments affect the success-

ul operation of the exploit. We further expanded the set of ker-

el CVEs with more recent exploits for which publicly available

xploits are available.

Using this process, we were able to map 42 CVEs to the crucial

ystem calls and arguments necessary for their successful exploita-

ion. As an example of our mapping, CVE-2016-3134 (cve, 2016) is

 vulnerability in the netfilter subsystem of the Linux kernel, which

an only be triggered by invoking the setsockopt system call

ith IPT_SO_SET_REPLACE as its third argument (optname).
Given this set of 42 CVEs, Confine mitigates at least one of them

n a container after applying argument concretization, and 28 of

hich cannot be mitigated by container-wide filtering. As shown in

igure 6 , application-specific filtering offers only a slight advantage

ompared to container-wide filtering, but the addition of argument

oncretization offers a significant improvement. In the best case,

he number of mitigated CVEs for Telegraf increases from six to 32,

hile in the worst case only five additional CVEs are mitigated for

erl. These CVEs, which are mitigated due to applying argument

oncretization, cannot be mitigated by other system call filtering

pproaches (Canella et al., 2021; DeMarinis et al., 2020; Ghavamnia

t al., 2020a; Lei et al., 2017; doc, 2023; Wan et al., 2017) that do

ot restrict the system call arguments, because the container or

pplication uses the respective system call.

Table 1 provides a description of the CVEs blocked by Confine

cross all containers, as well as the number of containers in which

 given CVE is blocked. It is worth noting that CVEs related to the

etsockopt , socket , and ioctl system calls cannot be mit-
11
gated by system call filtering alone. Confine manages to mitigate

hese CVEs across 10, 14, and 24 containers, respectively, as a result

f argument concretization. Overall, Confine mitigates 276% more

VEs per container (22 CVEs on average) compared to container-

ide filtering (seven CVEs on average).

. Discussion and limitations

In this work, we mainly focus on a container’s execution phases

o show that even without complex analysis of the target program

e.g., temporal system call specialization Ghavamnia et al., 2020b),

e can still generate restrictive system call filters and enforce

hem using a ready-to-use, non-intrusive technique. It is possible

o further restrict the final application by applying temporal sys-

em call specialization (Ghavamnia et al., 2020b) after the binary

nters its own serving phase. Applying configuration-based soft-

are debloating (Ghavamnia et al., 2022; Koo et al., 2019) could

lso result in even more restrictive filters by removing unneces-

ary features depending on the selected configuration options. We

eave the integration of such techniques into Confine as part of our

uture work.

As we discussed in Section 6 , extracting system call filters for

ynamically-typed languages (e.g., Perl, Python) is more compli-

ated. These languages typically have an interpreter which pro-

ides APIs for accessing the underlying OS features and system

alls. Confine currently generates a system call profile for these

anguages by considering all system call requirements of the inter-

reter. Our approach suffers from overapproximation, because the

ctual program may not require all the features of the interpreter.

e can generate a more restrictive system call profile by analyzing

he interpreter and its APIs. Saphire (Bulekov et al., 2021) builds

ore restrictive system call filters for PHP programs by analyzing

he interpreter. This work shows performing more fine-tuned sys-

em call filtering on dynamically-typed languages requires analyz-

ng the interpreter.

Furthermore, as we discussed in Section 4 , among the ap-

roaches we could use to install the application-specific filter, we

hoose the “proxy” program technique due to its low intrusiveness.

owever, this approach requires the execve system call to re-

ain non-blocked. In cases that the target program does not need

xecve (only 3 among our containers), this becomes a security

imitation of the proxy program approach, as execve could other-

ise have been blocked. The binary patching approach (as men-

ioned in Section 4.3.2), however, circumvents this issue at the

ost of being more intrusive, requiring modification of the binary.

witching among these two approaches is a matter of engineering

ffort, and we plan to support both as part of our future work.

We considered the top-100 official container images and se-

ected only those that meet specific criteria, including the ability to

xecute a single target application, without requiring manual regis-

ration or payment on Docker Hub, and compatibility with Angr for

xtracting the control flow graph (CFG) of the invoked programs

nd their libraries. Therefore, we ended up with the 27 Docker im-

ges mentioned in the Section 6 . Among the top-100 official con-

ainer, there were 11 that executed more than one application in

heir post-initialization phase. We did not apply our technique to

hese Docker images, because they required more tuning to gener-

te separate post-initialization Seccomp profiles for the different

pplications that remain running. These were mainly containers

hich executed programs developed using the Erlang (doc, 2023a)

rogramming language.

Among the rest, the Cassandra image (doc, 2023a) is the only

ne that required some manual analysis of a script executed during

ts post-initialization phase, which performs another set of opera-

ions to prepare the environment before executing the target ap-

lication. Confine could still harden the image by manually mod-

M. Rostamipoor, S. Ghavamnia and M. Polychronakis Computers & Security 132 (2023) 103325

Table 1

Number of containers for which a given CVE is blocked due to W: container-wide filtering, S: application-specific filtering, A: application-specific filtering with argument

concretization.

CVE ID System Calls Description W S A

2022–27666 socket, setsockopt A heap buffer overflow flaw was found in IPsec can cause privilege gain via

overwrite kernel heap objects

0 0 7

2022-0847 splice, pipe A local privilege escalation vuln. that allows an attacker to overwrite data in

arbitraryread-only files

19 26 26

2019–6974 ioctl A use-after-free vuln. triggered by calling ioctl with kvm_ioctl_create_device

as itsargument

0 0 24

2012–2127 clone Remote attackers can cause DOS via calling CLONE_NEWPID clone system call 0 0 27

2013-1858 clone Improper handling in a combination of the CLONE_NEWUSER and CLONE_FS
flags of clone system call allows local users to gain privileges

0 0 27

2009–4131 ioctl The EXT4_IOC_MOVE_EXT implementation in the ext4 FS allows overwriting of

files

0 0 24

2009–4141 ioctl Privilege gain using UAF vuln. via vectors involving enabling O_ASYNC on a

locked file

0 0 23

2010-0437 ioctl, socket DoS through an IPv6 TUN network interface 0 0 24

2010–4077 ioctl Access sensitive information from kernel memory via a TIOCGICOUNT ioctl call 0 0 24

2010–4158 socket, setsockopt Access sensitive information from kernel memory via a crafted socket filter 0 0 1

2012-0207 socket Remote attackers can cause a DoS via IGMP packets 0 0 4

2014–2851 socket Integer overflow in ping_init_sock function can cause a DoS or privilege

gain

0 0 4

2014–5207 mount A vuln. in namespace.c can cause privilege gain or DoS via a remount of a bind

mountusing MS_BIND flag

10 25 25

2016–3134 setsockopt A vuln. can cause privilege gain or DoS via an IPT_SO_SET_REPLACE
setsockopt call

0 0 7

2009-1337 clone, execve A vuln. allows local users to send signal to a process and then launch a setuid

app.

0 0 27

2010–3081 setsockopt, getsockopt A stack underflow vuln can lead to privilege gain by using the

compat_mc_getsockopt function

0 0 7

2010–4258 clone, splice A vuln. can cause privilege gain via the clear_child_tid feature and the

splice syscall

19 26 27

2009-0676 getsockopt Potentially sensitive information can be obtained from kernel memory via

an SO_BSDCOMPAT getsockopt request

0 0 7

2016-1583 mmap, clone Crafted mmap syscall can lead to privilege gain and DoS 0 0 27

2016–5195 madvise, mmap Race condition causes privilege gain due to incorrect handling of COW

whichallows write to read-only memory

0 0 6

2016–4578 ioctl Sensitive information can be obtained from kernel memory via crafted use of

theALSA timer interface

0 0 24

2016–4997 setsockopt, socket Vulnerability in the IPT_SO_SET_REPLACE and IP6T_SO_SET_REPLACE
setsockoptimplementations can lead to privilege gain or DoS.

0 0 7

2016–8655 setsockopt Bug in the packet_set_ring and packet_setsockopt functions can lead

to privilegegain or DoS

0 0 3

2016–9793 setsockopt The sock_setsockopt function can lead to DoS by a crafted setsockopt syscall 0 0 5

2017–15649 setsockopt, socket Vulnerability in af_packet.c leads to privilege gain via crafted syscalls 0 0 10

2017–16939 setsockopt, socket SO_RCVBUF setsockopt syscall and XFRM_MSG_GETPOLICY Netlink msg leads

to privlegegain or DoS

0 0 4

2017–2671 socket Access to the protocol value of IPPROTO_ICMP in a socket syscall can cause DoS 0 0 4

2010–4165 setsockopt, socket Improper handling of TCP_MAXSEG values in do_tcp_setsockopt causes DoS

via asetsockopt call

0 0 2

2019–9213 mmap Improper check of mmap min. address in expand_downwards allows

exploitation of nullptr derefs

0 0 4

2009–2767 clock_nanosleep DoS or privilege gain due to CLOCK_MONOTONIC_RAW clock_nanosleep call 3 8 8

2012-0957 uname, personality The override_release function allows information to be obtained

fromkernel memory via a uname and a UNAME26 personality syscall

27 27 27

2014–3631 add_key Multiple keyctl newring operations followed by a keyctl timeout operation can

cause DoS

19 27 27

2016-0728 keyctl The join_session_keyring function can lead to privilege gain or DoS via

crafted keyctl commands

24 27 27

2017–7533 inotify_add_watch, inotify_init1 Race condition leads to privilege gain or DoS by leveraging simultaneous

execution of the inotify_handle_event and vfs_rename functions

23 25 27

2019–11599 mmap, ioctl Race condition allows information leak or DoS by mmget_not_zero or

get_task_mm calls

0 0 24

2012–3375 epoll_ctl Improper handling of EPOLL_CTL_ADD operations can lead to DoS 1 1 1

2011-1082 epoll_create Crafted application that makes epoll_create and epoll_ctl syscalls can

cause DoS

1 1 1

2014–4014 chmod Vulnerability allows bypass of intended chmod restrictions 1 2 3

2014–7822 splice Crafted splice syscall can cause DoS 19 26 26

2017–11176 socket Attackers can cause DoS by using a user-space close of a Netlink socket 0 0 4

2017–5123 waitid Insufficient data validation in waitid allowed an user to escape sandboxes on

Linux

20 22 22

2009-1527 ptrace Race condition in the ptrace_attach function can lead to privilege gain via

a PTRACE_ATTACH ptrace call

24 24 24

12

M. Rostamipoor, S. Ghavamnia and M. Polychronakis Computers & Security 132 (2023) 103325

Fig. 6. Our fine-grained system call to CVE mapping shows that while application-specific filtering only slightly increases the number of mitigated kernel CVEs compared

to container-wide filtering (left and middle bars), the addition of system call argument concretization in many cases more than doubles the number of mitigated CVEs per

container (rightmost bars).

i

i

f

g

a

t

e

8

y

i

S

n

j

g

c

n

u

v

s

d

c

8

h

m

r

c

t

p

a

c

t

a

n

S

a

fi

s

p

a

n

o

g

t

t

c

w

t

8

o

s

f

g

2

a

2

J

Y

r

W

t

a

c

n

2

q

s

c

s

e

t

c

8

k

fying the final script to execute our specially-crafted C program

nstead of the main application. Additionally, we encountered only

our images for which Angr was unable to extract the control flow

raph (CFG) of the main executable. Of the remaining Docker im-

ges, they were intended as vanilla installations for other applica-

ions to build upon, and thus did not meet our specific criteria for

valuation.

. Related work

System call policy generation through static source code anal-

sis has been a widely used approach in the fields of host-based

ntrusion detection (Feng et al., 2004; Forrest et al., 1996; Jain and

ekar, 20 0 0; Kruegel et al., 2005; Parampalli et al., 2008; Wag-

er and Dean, 2001) and sandboxing (Garfinkel et al., 2004; Ra-

agopalan et al., 2005). However, these previous works target pro-

rams from more than twenty years ago which were less compli-

ated and mostly used static linking. Furthermore, they either do

ot restrict the argument values passed to system calls at all, or

se dynamic analysis and anomaly detection to extract the used

alues of the system call arguments. This can cause soundness is-

ues and break the target program.

Given that the main focus of our work is on attack surface re-

uction, and that programs nowadays have become much more

omplicated, we discuss more recent related works in this context.

.1. Container security and debloating

Given the increased use of containers, previous works

ave focused on evaluating the security of container environ-

ents (Combe et al., 2016; Lin et al., 2018; Shu et al., 2017) and

educing attack surface by applying more restrictive security poli-

ies (Findlay et al., 2021; Loukidis-Andreou et al., 2018), or splitting

hem into smaller containers (Rastogi et al., 2017a; 2017b).

Generating system call policies for containers has also been ex-

lored by prior work. Wan et al. (2017) and DockerSlim (doc, 2023)

pply dynamic analysis to container hardening. They profile appli-

ations running in the container to extract the set of system calls

hey use and generate corresponding Seccomp filters. DockerSlim

lso removes files which are unused during the profiling.

Speaker (Lei et al., 2017) is another system that relies on dy-

amic analysis to extract a container’s system calls requirements.

imilarly to Confine, Speaker considers the two execution phases of

 container, and generates a boot-time and runtime Seccomp pro-

le. The main difference com pared to our work is that Confine uses
13
tatic analysis to identify the required system calls, and more im-

ortantly, Speaker uses a more intrusive mechanism to apply the

pplication-specific Seccomp profile, by modifying the Linux ker-

el.

In general, all the works mentioned in this section rely solely

n dynamic analys to extract system calls, while our approach

enerates system call policies using static code analysis. In addi-

ion, Confine also performs argument concretization, a feature that

o the best of our knowledge is not supported by any previous

ontainer hardening approach. Therefore, comparing our approach

ith these related works would not be fair to directly compare

hem.

.2. Application debloating

Many of the prior works on software debloating have focused

n removing excessive code from individual processes. Various

tatic and dynamic code analysis techniques have been proposed

or debloating of software developed in different programming lan-

uages, including C/C++ (Agadakos et al., 2019; Alhanahnah et al.,

021; Ghaffarinia and Hamlen, 2019; Heo et al., 2018; Mulliner

nd Neugschwandtner, 2015; Porter et al., 2020; Qian et al., 2019;

020; Quach et al., 2018; Sharif et al., 2018; Song and Xing, 2018),

ava (Jiang et al., 2016; Suparna Bhattacharya and Nanda, 2013;

ufei Jiang and Liu, 2016), and PHP (Amin Azad et al., 2019).

Similar to Confine, Shredder (Mishra and Polychronakis, 2018)

estricts system calls by limiting their arguments, but focuses on

indows applications and modifies the user-space system call in-

erface to enforce the restriction. Saffire (Mishra and Polychron-

kis, 2020) also applies argument-level filtering by generating spe-

ialized versions of library functions. In contrast to Confine, it

eeds the source code of the application to perform its analysis.

Sysfilter (DeMarinis et al., 2020) and Chestnut (Canella et al.,

021) both apply binary analysis to identify the system call re-

uirements of a given application. However, neither apply any re-

trictions for the system call arguments. Temporal system call spe-

ialization (Ghavamnia et al., 2020b) takes the execution phase of

erver applications into account and creates two separate filters for

ach phase. However, it requires the source code of the application

o perform pointer analysis and apply pruning on the application

allgraph.

.3. Kernel debloating

There have been several works that focus on minimizing the

ernel’s footprint and customizing its code according to user re-

M. Rostamipoor, S. Ghavamnia and M. Polychronakis Computers & Security 132 (2023) 103325

q

2

t

i

p

a

c

e

t

9

t

t

i

F

t

s

t

r

t

c

t

a

r

a

w

u

t

e

s

t

o

w

t

t

p

D

r

t

v

fi

M

D

C

o

n

–

p

A

t

(

s

a

c

t

D

R

A

A

A

A

A

B

B

C

C

C

D

D

D
D

D

D
D

F

F

F

G

G

G

G

G

G
G

G

H

H

H

J
uirements. KASR (Zhang et al., 2018) and Face-Change (Gu et al.,

014) use dynamic analysis to generate kernel profiles based on

he requirements of a single application. Then they use virtual-

zation mechanisms to limit each application to its pre-generated

rofile. Shard (Abubakar et al., 2021) combines static and dynamic

nalysis to generate kernel profiles per application and per system

all. Kurmus et al. (2013) propose a system for the automated gen-

ration of kernel configuration files for tailoring the Linux kernel

o special workloads.

. Conclusion

Our work was motivated by the lack of a generic solution for

he automated generation of restrictive system call policies for con-

ainer environments—one that does not rely on training with real-

stic workloads, which is a cumbersome and error-prone method.

urthermore, our work shows that further attack surface reduc-

ion is possible by i) moving from container-wide to application-

pecific system call policies, and ii) filtering not only at the sys-

em call level, but also at the system call argument level. Defer-

ing the installation of the filter from the launch time of the con-

ainer to the launch time of the container’s target application in-

reases the number of system calls that can be filtered, as those

hat are required during the container’s initialization phase but

re not needed by the target application can be safely removed

ight before the application is launched. In addition, the function-

lity of the remaining system calls can be limited by concretizing

hen possible the arguments of system calls according to the val-

es passed to these system calls by the program.

We have implemented these capabilities in Confine, which au-

omates the whole process by scanning a container image and gen-

rating a container-wide system call policy and an application-

pecific system call policy that is transparently enforced, without

he need to modify the kernel or the target application. The results

f our experimental evaluation show that moving from container-

ide to application-specific filtering increases the number of fil-

ered system calls by 25% on average, while argument concretiza-

ion results in the neutralization of more Linux kernel CVEs com-

ared to plain system call filtering.

eclaration of Competing Interest

The authors declare the following financial interests/personal

elationships which may be considered as potential competing in-

erests: Michalis Polychronakis reports financial support was pro-

ided by Office of Naval Research. Michalis Polychronakis reports

nancial support was provided by National Science Foundation.

ichalis Polychronakis reports financial support was provided by

efense Advanced Research Projects Agency.

RediT authorship contribution statement

Maryam Rostamipoor: Conceptualization, Software, Writing –

riginal draft, Writing – review & editing. Seyedhamed Ghavam-

ia: Conceptualization, Software, Writing – original draft, Writing

review & editing. Michalis Polychronakis: Conceptualization, Su-

ervision, Writing – original draft, Writing – review & editing.

cknowledgments

This work was supported by the Office of Naval Research (ONR)

hrough award N0 0 014-17-1-2891, the National Science Foundation

NSF) through award CNS-1749895, and the Defense Advanced Re-

earch Projects Agency (DARPA) through award D18AP0 0 045, with
14
dditional support by Accenture. Any opinions, findings, and con-

lusions or recommendations expressed herein are those of the au-

hors and do not necessarily reflect the views of the ONR, NSF,

ARPA, or Accenture.

eferences

bubakar, M. , Ahmad, A. , Fonseca, P. , Xu, D. , 2021. Shard: fine-grained kernel spe-

cialization with context-aware hardening. In: 30th USENIX Security Symposium

(USENIX Security 21), pp. 2435–2452 .

gadakos, I. , Jin, D. , Williams-King, D. , Kemerlis, V.P. , Portokalidis, G. , 2019. Nibbler:

debloating binary shared libraries. In: Proceedings of the 35th Annual Computer
Security Applications Conference (ACSAC), pp. 70–83 .

lhanahnah, M., Jain, R., Rastogi, V., Jha, S., Reps, T., 2021. Lightweight, multi-stage,
compiler-assisted application specialization. 2109.02775 .

min Azad, B. , Laperdrix, P. , Nikiforakis, N. , 2019. Less is more: quantifying the secu-
rity benefits of debloating web applications. In: Proceedings of the 28th USENIX

Security Symposium .

ndersen, L.O. , 1994. Program analysis and specialization for the C programming
language. University of Cophenhagen Ph.D. thesis .

ulekov, A. , Jahanshahi, R. , Egele, M. , 2021. Saphire: sandboxing PHP applications
with tailored system call allowlists. In: Proceedings of the 30th USENIX Security

Symposium (USENIX Security 21), pp. 2881–2898 .
utler, B., 2016. Which is cheaper: containers or vir-

tual machines? https://www.networkworld.com/article/3126069/

which- is- cheaper- containers- or- virtual- machines.html .
anella, C. , Werner, M. , Gruss, D. , Schwarz, M. , 2021. Automating seccomp filter gen-

eration for Linux applications. In: Proceedings of the 2021 on Cloud Computing
Security Workshop, pp. 139–151 .

ombe, T. , Martin, A. , Di Pietro, R. , 2016. To docker or not to docker: a security
perspective. IEEE Cloud Comput. 3 (5), 54–62 .

VE details, common vulnerabilities and exposures database, c2023. https://www.
cvedetails.com .

eMarinis, N. , Williams-King, K. , Jin, D. , Fonseca, R. , Kemerlis, V.P. , 2020. Sysfil-

ter: automated system call filtering for commodity software. In: Proceedings of
the International Conference on Research in Attacks, Intrusions, and Defenses

(RAID) .
ocker Hub, (2023a). Docker Hub. https://hub.docker.com .

ocker Hub, (2023b). Apache httpd. https://hub.docker.com/ _ /httpd .
ocker Hub, (2023c). MongoDB. https://hub.docker.com/ _ /mongo/ .

ocker Hub, (2023c). Nginx. https://hub.docker.com/ _ /nginx .

ocker Hub, (2023d). Docker Hub, Percona. https://hub.docker.com/ _ /percona .
ocker Hub, 2023e. Postgres. https://hub.docker.com/ _ /postgres .

eng, H.H. , Giffin, J.T. , Huang, Y. , Jha, S. , Lee, W. , Miller, B.P. , 2004. Formalizing sensi-
tivity in static analysis for intrusion detection. In: Proceedings of the IEEE Sym-

posium on Security & Privacy (S&P), pp. 194–208 .
indlay, W., Barrera, D., Somayaji, A., 2021. BPFContain: fixing the soft underbelly of

container security. arXiv preprint arXiv:2102.06972 .

orrest, S. , Hofmeyr, S.A . , Somayaji, A . , Longstaff, T.A . , 1996. A sense of self for Unix
processes. In: Proceedings of the IEEE Symposium on Security & Privacy (S&P),

pp. 120–128 .
arfinkel, T. , Pfaff, B. , Rosenblum, M. , 2004. Ostia: a delegating architecture for se-

cure system call interposition. In: Proceedings of the Network and Distributed
System Security Symposium (NDSS) .

haffarinia, M. , Hamlen, K.W. , 2019. Binary control-flow trimming. In: Proceedings

of the 26th ACM Conference on Computer and Communications Security (CCS) .
havamnia, S. , Palit, T. , Benameur, A. , Polychronakis, M. , 2020. Confine: automated

system call policy generation for container attack surface reduction. In: Pro-
ceedings of the International Conference on Research in Attacks, Intrusions, and

Defenses (RAID) .
havamnia, S. , Palit, T. , Mishra, S. , Polychronakis, M. , 2020. Temporal system call

specialization for attack surface reduction. In: Proceedings of the 29th USENIX

Security Symposium .
havamnia, S. , Palit, T. , Polychronakis, M. , 2022. C2C: fine-grained configuration–

driven system call filtering. In: Proceedings of the 29th ACM SIGSAC Conference
on Computer and Communications Security, pp. 1243–1257 .

NU Compiler Collection, 2023. https://gcc.gnu.org .
u, Z. , Saltaformaggio, B. , Zhang, X. , Xu, D. , 2014. Face-change: application-driven

dynamic kernel view switching in a virtual machine. In: Proceedings of the 44th

IEEE/IFIP International Conference on Dependable Systems and Networks (DSN) .
ustafsson, A., Egypt https://www.gson.org/egypt/egypt.html .

e, H. , Debray, S.K. , Andrews, G.R. , 2007. The revenge of the overlay: automatic com-
paction of OS kernel code via on-demand code loading. In: Proceedings of the

7th ACM & IEEE International Conference on Embedded Software, pp. 75–83 .
eo, K. , Lee, W. , Pashakhanloo, P. , Naik, M. , 2018. Effective program debloating via

reinforcement learning. In: Proceedings of the 24th ACM Conference on Com-
puter and Communications Security (CCS) .

ind, M. , 2001. Pointer analysis: haven’t we solved this problem yet? In: Proceed-

ings of the ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software
Tools and Engineering (PASTE), pp. 54–61 .

ain, K. , Sekar, R. , 20 0 0. User-level infrastructure for system call interposition: a
platform for intrusion detection and confinement. In: Proceedings of the Net-

work and Distributed System Security Symposium (NDSS) .

http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0001
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0001
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0001
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0001
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0001
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0002
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0002
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0002
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0002
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0002
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0002
http://arxiv.org/abs/arXiv:2109.02775
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0003
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0003
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0003
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0003
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0004
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0004
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0005
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0005
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0005
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0005
https://www.networkworld.com/article/3126069/which-is-cheaper-containers-or-virtual-machines.html
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0006
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0006
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0006
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0006
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0006
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0007
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0007
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0007
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0007
https://www.cvedetails.com
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0008
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0008
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0008
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0008
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0008
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0008
https://hub.docker.com
https://hub.docker.com/_/httpd
https://hub.docker.com/_/mongo/
https://hub.docker.com/_/nginx
https://hub.docker.com/_/percona
https://hub.docker.com/_/postgres
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0009
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0009
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0009
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0009
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0009
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0009
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0009
http://arxiv.org/abs/arXiv:2102.06972
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0010
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0010
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0010
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0010
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0010
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0011
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0011
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0011
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0011
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0012
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0012
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0012
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0013
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0013
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0013
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0013
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0013
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0014
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0014
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0014
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0014
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0014
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0015
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0015
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0015
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0015
https://gcc.gnu.org
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0016
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0016
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0016
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0016
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0016
https://www.gson.org/egypt/egypt.html
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0017
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0017
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0017
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0017
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0018
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0018
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0018
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0018
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0018
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0019
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0019
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0020
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0020
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0020

M. Rostamipoor, S. Ghavamnia and M. Polychronakis Computers & Security 132 (2023) 103325

J

K

K

K

K

K

K

L

L

L

L

L

L

L

L

L

M

M

M

N

N

N

N

N

N

P

P

P

P
Q

Q

Q

Q

R

R

R

S

S

S

S

S

S
S

S

S

S

W

W

Y

Z

Z
iang, Y. , Zhang, C. , Wu, D. , Liu, P. , 2016. Feature-based software customization: pre-
liminary analysis, formalization, and methods. In: Proceedings of the 17th IEEE

International Symposium on High Assurance Systems Engineering (HASE) .
emerlis, V.P. , 2015. Protecting commodity operating systems through strong kernel

isolation. Columbia University Ph.D. thesis .
emerlis, V.P. , Polychronakis, M. , Keromytis, A.D. , 2014. ret2dir: Rethinking kernel

isolation. In: Proceedings of the 23rd USENIX Security Symposium, pp. 957–972 .
emerlis, V.P. , Portokalidis, G. , Keromytis, A.D. , 2012. kGuard: lightweight kernel

protection against return-to-user attacks. In: Proceedings of the 21st USENIX

Conference on Security Symposium. USENIX Association, Berkeley, CA, USA,
p. 39 .

oo, H. , Ghavamnia, S. , Polychronakis, M. , 2019. Configuration-driven software de-
bloating. In: Proceedings of the 12th European Workshop on Systems Security .

ruegel, C. , Kirda, E. , Mutz, D. , Robertson, W. , Vigna, G. , 2005. Automating mimicry
attacks using static binary analysis. In: Proceedings of the USENIX Security Sym-

posium .

urmus, A. , Tartler, R. , Dorneanu, D. , Heinloth, B. , Rothberg, V. , Ruprecht, A. ,
Schroder-Preikschat, W. , Lohmann, D. , Kapitza, R. , 2013. Attack surface metrics

and automated compile-time OS kernel tailoring. In: Proceedings of the Net-
work and Distributed System Security Symposium (NDSS) .

ee, C.-T. , Lin, J.-M. , Hong, Z.-W. , Lee, W.-T. , 2004. An application-oriented Linux ker-
nel customization for embedded systems. J. Inf. Sci. Eng. 20 (6), 1093–1107 .

ei, L. , Sun, J. , Sun, K. , Shenefiel, C. , Ma, R. , Wang, Y. , Li, Q. , 2017. SPEAKER:

split-phase execution of application containers. In: Proceedings of the 12th Con-
ference on Detection of Intrusions and Malware, and Vulnerability Assessment

(DIMVA), pp. 230–251 .
i, Y. , Dolan-Gavitt, B. , Weber, S. , Cappos, J. , 2017. Lock-in-pop: securing privileged

operating system kernels by keeping on the beaten path. In: Proceedings of the
USENIX Annual Technical Conference (ATC) .

in, X. , Lei, L. , Wang, Y. , Jing, J. , Sun, K. , Zhou, Q. , 2018. A measurement study on

Linux container security: attacks and countermeasures. In: Proceedings of the
34th Annual Computer Security Applications Conference (ACSAC), pp. 418–429 .

inux manual page, ld.so(8), 2023. https://man7.org/linux/man-pages/man8/ld.so.8.
html .

inux Programmer’s Manual, Capabilities(7), c2023a. http://man7.org/linux/
man-pages/man7/capabilities.7.html .

inux Programmer’s Manual, Cgroups(7), c2023b. http://man7.org/linux/man-pages/

man7/cgroups.7.html .
inux Programmer’s Manual, Namespaces(7), c2023c. http://man7.org/linux/

man-pages/man7/namespaces.7.html .
oukidis-Andreou, F. , Giannakopoulos, I. , Doka, K. , Koziris, N. , 2018. Docker-Sec: a

fully automated container security enhancement mechanism. In: Proceedings of
the 38th International Conference on Distributed Computing Systems (ICDCS),

pp. 1561–1564 .

ishra, S. , Polychronakis, M. , 2018. Shredder: breaking exploits through API Spe-
cialization. In: Proceedings of the 34th Annual Computer Security Applications

Conference (ACSAC) .
ishra, S. , Polychronakis, M. , 2020. Saffire: context-sensitive function specialization

against code reuse attacks. In: Proceedings of the 5th IEEE European Sympo-
sium on Security and Privacy (EuroS&P) .

ulliner, C., Neugschwandtner, M., 2015. Breaking payloads with runtime code
stripping and image freezing. Black Hat USA.

ational Vulnerability Database, CVE-2012-2127, 2012. https://nvd.nist.gov/vuln/

detail/CVE- 2012- 2127 .
ational Vulnerability Database, CVE-2013-1858, 2013. https://nvd.nist.gov/vuln/

detail/CVE- 2013- 1858 .
ational Vulnerability Database, CVE-2016-3134, 2016. https://www.cvedetails.com/

cve/CVE- 2016- 3134/ .
ational Vulnerability Database, CVE-2017-5123, 2017. https://www.cvedetails.com/

cve/CVE- 2017- 5123/ .

ational Vulnerability Database, CVE-2017-5123, 2019. National Vulnerability
Database, CVE-2019-6974. https://nvd.nist.gov/vuln/detail/CVE- 2019- 6974 .

ational Vulnerability Database, CVE-2022-0847, 2022. https://nvd.nist.gov/vuln/
detail/CVE- 2022- 0847 .

arampalli, C. , Sekar, R. , Johnson, R. , 2008. A practical mimicry attack against pow-
erful system-call monitors. In: Proceedings of the ACM Symposium on Informa-

tion, Computer and Communications Security (ASIACCS), pp. 156–167 .

omonis, M. , Petsios, T. , Keromytis, A.D. , Polychronakis, M. , Kemerlis, V.P. , 2017. kR X :
comprehensive kernel protection against just-in-time code reuse. In: Proc. of

EuroSys, pp. 420–436 .
15
orter, C. , Mururu, G. , Barua, P. , Pande, S. , 2020. Blankit library debloating: getting
what you want instead of cutting what you don’t. In: Proceedings of the 41st

ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion (PLDI), pp. 164–180 .

roduction-Grade Container Orchestration, Kubernetes, 2023. https://kubernetes.io .
ian, C. , Hu, H. , Alharthi, M. , Chung, P.H. , Kim, T. , Lee, W. , 2019. RAZOR: a framework

for post-deployment software debloating. In: Proceedings of the 28th USENIX
Security Symposium .

ian, C. , Koo, H. , Oh, C. , Kim, T. , Lee, W. , 2020. Slimium: debloating the chromium

browser with feature subsetting. In: In the proceedings of the 27th ACM SIGSAC
Conference on Computer and Communications Security, pp. 461–476 .

uach, A. , Prakash, A. , 2019. Bloat factors and binary specialization. In: Proceedings
of the 3rd ACM Workshop on Forming an Ecosystem Around Software Transfor-

mation (FEAST), pp. 31–38 .
uach, A. , Prakash, A. , Yan, L. , 2018. Debloating software through piece-wise com-

pilation and loading. In: Proceedings of the 27th USENIX Security Symposium,

pp. 869–886 .
ajagopalan, M. , Hiltunen, M. , Jim, T. , Schlichting, R. , 2005. Authenticated system

calls. In: Proceedings of the International Conference on Dependable Systems
and Networks (DSN), pp. 358–367 .

astogi, V. , Davidson, D. , Carli, L.D. , Jha, S. , McDaniel, P.D. , 2017. Cimplifier: auto-
matically debloating containers. In: Proceedings of the 11th Joint Meeting on

Foundations of Software Engineering (ESEC/FSE) .

astogi, V. , Niddodi, C. , Mohan, S. , Jha, S. , 2017. New directions for container
debloating. In: Proceedings of the 2nd Workshop on Forming an Ecosystem

Around Software Transformation (FEAST), pp. 51–56 .
hapira, D., 2017. Escaping Docker container using waitid()

– CVE-2017-5123. https://www.twistlock.com/labs-blog/
escaping- docker- container- using- waitid- cve- 2017- 5123/ .

harif, H. , Abubakar, M. , Gehani, A. , Zaffar, F. , 2018. Trimmer: application special-

ization for code debloating. In: Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering (ASE) .

hoshitaishvili, Y. , Wang, R. , Salls, C. , Stephens, N. , Polino, M. , Dutcher, A. , Grosen, J. ,
Feng, S. , Hauser, C. , Kruegel, C. , Vigna, G. , 2016. SoK: (State of) the art of war:

offensive techniques in binary analysis. IEEE Symposium on Security and Pri-
vacy .

hu, R. , Gu, X. , Enck, W. , 2017. A study of security vulnerabilities on Docker Hub. In:

Proceedings of the 7th ACM Conference on Data and Application Security and
Privacy (CODASPY), pp. 269–280 .

eccomp BPF (SECure COMPuting with filters), (2023). https://www.kernel.org/doc/
html/v4.16/userspace-api/seccomp _ filter.html .

lim.AI, slimtoolkit, 2023. https://dockersl.im .
ong, L. , Xing, X. , 2018. Fine-grained library customization. In: Proceedings of the

1st ECOOP International Workshop on Software Debloating and Delayering

(SALAD) .
ouppaya M., Morello J., Scarfone K., 2017. Application Container Security Guide.

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-190.pdf .
uparna Bhattacharya, K.G. , Nanda, M.G. , 2013. Combining concern input with pro-

gram analysis for bloat detection. In: Proceedings of the ACM SIGPLAN Interna-
tional Conference on Object Oriented Programming Systems Languages & Appli-

cations (OOPSLA) .
ysdig, 2023. https://sysdig.com/ .

agner, D. , Dean, D. , 2001. Intrusion detection via static analysis. In: Proceedings of

the IEEE Symposium on Security & Privacy, pp. 156–168 .
an, Z. , Lo, D. , Xia, X. , Cai, L. , Li, S. , 2017. Mining sandboxes for Linux containers.

In: Proceedings of the 10th IEEE International Conference on Software Testing,
Verification and Validation (ICST), pp. 92–102 .

ufei Jiang, D.W. , Liu, P. , 2016. JRed: program customization and bloatware miti-
gation based on static analysis. In: Proceedings of the 40th Annual Computer

Software and Applications Conference (ACSAC) .

hang, T. , Shen, W. , Lee, D. , Jung, C. , Azab, A.M. , Wang, R. , 2019. PeX: a permission
check analysis framework for Linux kernel. In: Proceedings of the 28th USENIX

Security Symposium, pp. 1205–1220 .
hang, Z. , Cheng, Y. , Nepal, S. , Liu, D. , Shen, Q. , Rabhi, F. , 2018. KASR: a reliable

and practical approach to attack surface reduction of commodity OS kernels. In:
Proceedings of the International Conference on Research in Attacks, Intrusions,

and Defenses (RAID), pp. 691–710 .

http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0021
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0021
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0021
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0021
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0021
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0022
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0022
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0023
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0023
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0023
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0023
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0024
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0024
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0024
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0024
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0025
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0025
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0025
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0025
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0026
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0026
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0026
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0026
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0026
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0026
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0027
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0027
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0027
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0027
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0027
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0027
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0027
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0027
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0027
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0027
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0028
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0028
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0028
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0028
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0028
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0029
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0029
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0029
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0029
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0029
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0029
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0029
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0029
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0030
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0030
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0030
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0030
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0030
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0031
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0031
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0031
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0031
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0031
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0031
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0031
https://man7.org/linux/man-pages/man8/ld.so.8.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/cgroups.7.html
http://man7.org/linux/man-pages/man7/namespaces.7.html
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0032
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0032
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0032
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0032
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0032
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0033
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0033
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0033
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0034
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0034
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0034
https://nvd.nist.gov/vuln/detail/CVE-2012-2127
https://nvd.nist.gov/vuln/detail/CVE-2013-1858
https://www.cvedetails.com/cve/CVE-2016-3134/
https://www.cvedetails.com/cve/CVE-2017-5123/
https://nvd.nist.gov/vuln/detail/CVE-2019-6974
https://nvd.nist.gov/vuln/detail/CVE-2022-0847
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0035
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0035
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0035
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0035
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0036
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0036
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0036
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0036
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0036
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0036
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0037
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0037
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0037
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0037
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0037
https://kubernetes.io
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0038
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0038
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0038
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0038
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0038
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0038
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0038
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0039
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0039
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0039
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0039
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0039
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0039
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0040
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0040
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0040
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0041
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0041
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0041
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0041
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0042
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0042
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0042
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0042
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0042
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0043
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0043
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0043
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0043
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0043
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0043
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0044
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0044
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0044
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0044
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0044
https://www.twistlock.com/labs-blog/escaping-docker-container-using-waitid-cve-2017-5123/
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0045
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0045
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0045
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0045
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0045
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0046
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0046
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0046
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0046
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0046
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0046
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0046
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0046
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0046
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0046
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0046
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0046
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0047
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0047
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0047
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0047
https://www.kernel.org/doc/html/v4.16/userspace-api/seccomp_filter.html
https://dockersl.im
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0048
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0048
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0048
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-190.pdf
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0049
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0049
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0049
https://sysdig.com/
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0050
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0050
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0050
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0051
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0051
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0051
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0051
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0051
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0051
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0052
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0052
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0052
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0053
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0053
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0053
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0053
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0053
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0053
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0053
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0054
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0054
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0054
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0054
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0054
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0054
http://refhub.elsevier.com/S0167-4048(23)00235-3/sbref0054

	Confine: Fine-grained system call filtering for container attack surface reduction
	1 Introduction
	2 Background
	2.1 Linux containers
	2.2 Seccomp BPF
	2.3 Threat model

	3 The need for static analysis
	4 Design
	4.1 Identifying running applications
	4.2 Static analysis
	4.2.1 System call identification
	4.2.2 System call argument concretization

	4.3 Hardening the container image
	4.3.1 Container-wide filter enforcement
	4.3.2 Application-specific filter enforcement

	5 Implementation
	5.1 Mapping libc functions to system calls
	5.2 Binary analysis
	5.2.1 Data flow analysis
	5.2.2 Dynamically loaded libraries

	5.3 Seccomp profile generation
	5.3.1 Container-wide filter enforcement
	5.3.2 Application-specific filter enforcement

	6 Experimental evaluation
	6.1 Filtered system calls
	6.2 Restricted system call arguments
	6.3 Security evaluation
	6.3.1 Coarse-grained syscall to CVE mapping
	6.3.2 Fine-grained syscall to CVE mapping

	7 Discussion and limitations
	8 Related work
	8.1 Container security and debloating
	8.2 Application debloating
	8.3 Kernel debloating

	9 Conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgments
	References

