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a b s t r a c t 

Reducing the attack surface of the OS kernel is a promising defense-in-depth approach for mitigating the 

fragile isolation guarantees of container environments. In contrast to hypervisor-based systems, malicious 

containers can exploit vulnerabilities in the underlying kernel to fully compromise the host and all other 

containers running on it. Previous container attack surface reduction efforts have relied on dynamic anal- 

ysis and training using representative workloads to limit the set of system calls exposed to containers. 

These approaches, however, do not capture exhaustively all the code that can potentially be needed by 

future workloads or rare runtime conditions, and are thus not appropriate as a generic solution. 

Aiming to provide a practical solution for the protection of arbitrary containers, in this paper we present 

a generic approach for the automated generation of restrictive system call policies for Docker containers. 

Our system, named Confine , uses static code analysis to inspect the containerized application and all its 

dependencies, identify the superset of system calls required for the correct operation of the container, and 

generate both a container-wide and application-specific Seccomp system call policy that can be readily 

enforced while loading the container and launching the main program. We also show that further attack 

surface reduction is possible by enforcing fine-grained system call policies that do not only consider the 

system calls used by the target application, but also their argument values. 

The results of our experimental evaluation with a set of 27 Docker images show that applying container- 

wide filtering disables more than 145 system calls on average across the entire container, and application- 

specific filtering increases the number of filtered system calls by 25% on average, as many system calls 

used exclusively by utilities and scripts during the container’s initialization phase can be safely removed 

afterwards. 

© 2023 Elsevier Ltd. All rights reserved. 
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. Introduction 

The convenience of running containers and managing them 

hrough orchestrators, such as Kubernetes ( kub, c2023 ), has pop- 

larized their use by developers and organizations, as they provide 

oth lower cost and increased flexibility. In contrast to virtual ma- 

hines, which run their own operating system (OS), multiple ten- 

nts can launch containers on top of the same OS kernel of the 

ost. This makes containers more lightweight compared to VMs, 

nd thus allows for running a higher number of instances on the 

ame hardware ( Butler, 2016 ). 

The performance gains of containers, however, come to the ex- 

ense of weaker isolation compared to VMs. Isolation between 

ontainers running on the same host is enforced purely in soft- 
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are by the underlying OS kernel. Therefore, adversaries who have 

ccess to a container on a third-party host can exploit kernel vul- 

erabilities to escalate their privileges and fully compromise the 

ost (and all the other containers running on it). 

The trusted computing base in container environments essen- 

ially comprises the entire kernel, and thus all its entry points be- 

ome part of the attack surface exposed to potentially malicious 

ontainers. Despite the use of strict software isolation mechanisms 

rovided by the OS, such as capabilities ( lin, 2023a ) and names- 

aces ( lin, c2023c ), a malicious tenant can leverage kernel vulnera- 

ilities to bypass them. For example, a vulnerability in the waitid 
ystem call ( cve, 2017 ) allowed malicious users to run a privilege 

scalation attack ( Shapira, 2017 ) and escape the container to gain 

ccess to the host. 

At the same time, the code base of the Linux kernel has been 

xpanding to support new features, protocols, and hardware. The 

ncrease in the number of exposed system calls throughout the 

ears is indicative of the kernel’s code “bloat.” The first version 

https://doi.org/10.1016/j.cose.2023.103325
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2023.103325&domain=pdf
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f the Linux kernel (released in 1991) had just 126 system calls, 

hereas version 5.4 (released in 2019) supports 335 system calls. 

s shown in previous works ( Gu et al., 2014; He et al., 2007; Kur-

us et al., 2013; Lee et al., 2004 ), different applications use dis- 

arate kernel features, leaving the rest unused—and available to be 

xploited by attackers. Kurmus et al. (2013) showed that each new 

ernel function is an entry point to accessing a large part of the 

hole kernel code, which leads to attack surface expansion. 

As a countermeasure to the ever expanding code base of mod- 

rn software, attack surface reduction techniques have recently 

tarted gaining traction. The main idea behind these techniques is 

o identify and remove (or neutralize) code which, although is part 

f the program, it is either i) completely inaccessible (e.g., non- 

mported functions from shared libraries), or ii) not needed for a 

iven workload or configuration. A wide range of previous works 

ave applied this concept at different levels, including removing 

nused functions from shared libraries ( Mishra and Polychronakis, 

018; Mulliner and Neugschwandtner, 2015; Quach et al., 2018 ) or 

ven removing whole unneeded libraries ( Koo et al., 2019 ); tai- 

oring kernel code based on application requirements ( Gu et al., 

014; Kurmus et al., 2013 ); or limiting system calls for contain- 

rs ( Rastogi et al., 2017a; 2017b; doc, 2023; Wan et al., 2017 ). In

act, one of the suggestions in the NIST container security guide- 

ines ( Murugiah Souppaya, 2017 ) is to reduce the attack surface by 

imiting the functionality available to containers. 

Despite their diverse nature, a common underlying challenge 

hared by all these approaches is how to accurately identify and 

aximize the code that can be safely removed. On one end of the 

pectrum, works based on static code analysis follow a more con- 

ervative approach, and opt for maintaining compatibility in the 

xpense of not removing all the code that is actually unneeded 

i.e., “remove what is not needed”). In contrast, some works rely 

n dynamic analysis and training ( Gu et al., 2014; Kurmus et al., 

013; Rastogi et al., 2017a; 2017b; doc, 2023; Wan et al., 2017 ) to

xercise the system using realistic workloads, and identify the ac- 

ual code that was executed while discarding the rest (i.e., “keep 

hat is needed”). For a given workload, this approach maximizes 

he code that can be removed, but as we show in Section 3 , it does

ot capture exhaustively all the code that can potentially be needed 

y different workloads—let alone parts of code that are executed 

arely, such as error handling routines. 

Given that previous efforts in the area of attack surface reduc- 

ion for container environments have focused on dynamic anal- 

sis ( Rastogi et al., 2017a; 2017b; doc, 2023; Wan et al., 2017 ),

n this work we aim to provide a more generic and practical so- 

ution that can be readily applied for the protection of any con- 

ainer without the need for training. Another shared characteristic 

f most previous works ( Rastogi et al., 2017a; 2017b; doc, 2023; 

an et al., 2017 ) is that they consider the entire container as a sin-

le entity, and generate system call policies for its whole lifetime, 

s opposed for the final target application. In addition, they follow 

n all-or-nothing approach to system calls, with each system call 

eing either allowed or denied, missing out on the opportunity to 

urther restrict the allowed interactions with the OS by partially 

locking some system call functionality. 

In this paper, we present an automated technique for gener- 

ting restrictive system call policies for arbitrary containers, with 

he goal of limiting the exposed interface of the underlying ker- 

el that can be abused. By relying on static code analysis, our ap- 

roach inspects all execution paths of the containerized application 

nd all its dependencies, and identifies the superset of system calls 

equired for the correct operation of the container. Our system, 

amed Confine , improves upon the state of the art in three main 

ays. First, it uses static (instead of dynamic) analysis to build a 

ound profile for the entire container. Second, based on the ob- 

ervation that containers typically host a single, long-running tar- 
2 
et application, Confine creates a second application-specific filter 

hat is installed right before the execution of the target applica- 

ion. This increases significantly the number of filtered system calls 

ompared to container-wide system call filtering, as many system 

alls used exclusively by utility programs during the container’s 

nitialization phase can be safely filtered afterwards. Third, for sys- 

em calls that cannot be filtered, Confine concretizes (in a conser- 

ative, best-effort way) their arguments according to the applica- 

ion’s needs. This prohibits the use of certain flag and constant val- 

es, which in many cases prevents the exploitation of kernel vul- 

erabilities associated with non-filtered system calls. 

We experimentally evaluated Confine with a set of 27 publicly 

vailable Docker images, and demonstrate its effectiveness in de- 

iving strict system call policies without breaking functionality. In 

articular, for about half of the containers, Confine disables 144 or 

ore system calls (out of 335) by applying container-wide filter- 

ng. In addition to container-wide system call filtering, Confine’s 

pplication-specific filtering increases the number of filtered sys- 

em calls by 25% on average. On top of system call filtering, argu- 

ent concretization results in the mitigation of a total of 28 Linux 

ernel CVEs across all tested container images. 

Confine is publicly available as an open-source project at: https: 

/www.github.com/shamedgh/confine . 

. Background 

The attack surface of the OS kernel used by containers can be 

educed by restricting the set of system calls available to each con- 

ainer. In this section, we describe how Linux containers provide 

solation to different “containerized” processes, and how Seccomp 

PF ( sec, 2023 ) can be used to reduce the kernel code exposed to

ontainers. 

.1. Linux containers 

Linux containers are an OS-level virtualization approach that 

an be used to execute multiple userlands on top of the same 

ernel. The Linux kernel uses Capabilities ( lin, 2023a ), Names- 

aces ( lin, c2023c ) and Control Groups (cgroups) ( lin, 2023b ) to

rovide isolation among different containers. 

Namespaces are a kernel feature that virtualizes global system 

esources (specifically: mount points, process IDs, network devices 

nd network stacks, IPC objects, hostnames, user and group IDs, 

nd cgroups), providing the “illusion” of exclusive use of these re- 

ources to processes within the same namespace. 

Control Groups allow processes to be organized into hierarchi- 

al groups, whose usage of various types of resources (e.g., CPU 

ime, memory, disk space, disk and network I/O) can be limited, 

ccounted, or prioritized accordingly. Containers use cgroups to 

rovide “fair” usage of resources. 

Docker ( Doc, 2023a ) is a platform that employs the software- 

s-a-service and platform-as-a-service models for developing, de- 

loying, and running containers. Every Docker container launched 

s based on a Docker image, which is a file built in layers, encap- 

ulating the entire environment (including a whole Linux distribu- 

ion, libraries, and support utilities) required to execute the con- 

ainerized application(s). The specification of the Docker image is 

escribed in a text file, called Dockerfile . The Dockerfile essentially 

ontains all the commands required to assemble the respective im- 

ge. Docker uses Linux namespaces and cgroups to provide isola- 

ion between containers. 

Docker Hub ( doc, 2023a ) is a central repository of both 

ommunity-based and official Docker images, which has drastically 

opularized container use among system administrators. More im- 

ortantly, by building streamlined services with a minimal code 

ase, Docker has enabled corporations to increasingly switch to 

https://www.github.com/shamedgh/confine
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Fig. 1. Example of a control flow in Nginx that is missed by dynamic analysis. Ovals represent functions, while rectangles represent basic blocks. Dashed branches and blocks 

are not executed during the training phase. 
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he use of microservices. Each microservice can be configured as 

 Docker image once, and then multiple instances of it can be 

aunched. 

.2. Seccomp BPF 

User-space applications communicate with the OS kernel 

hrough the provided set of system calls , i.e., a pre-defined API 

hat allows access to specific kernel functionalities programmati- 

ally. Most applications, however, typically need only a subset of 

he available system calls to function properly, i.e., most applica- 

ions do not make use of all the provided system calls. 

Processes can invoke any of the system calls provided by the 

S, as long as they have the necessary privileges to perform the 

equested operation, regardless of their needs. This can be viewed 

s a violation of the principle of least privilege, as allowing a pro- 

ram to invoke more system calls than those it actually requires 

ay aid an attacker in two main ways: i) a compromised (i.e., pre- 

iously benign) process can invoke the extra system calls to per- 

orm operations that the original program never intended to per- 

orm; and ii) a malicious process may exploit kernel vulnerabilities 

ssociated with those extra system calls, which otherwise would 

ave been inaccessible. 

Seccomp BPF ( sec, 2023 ) is a subsystem of the Linux kernel that

llows processes to limit the set of system calls available to them. 

he filters are defined using the BPF (Berkeley Packet Filter) lan- 

uage, and can allow, deny, or log invocations of specific system 

alls. To prevent time-of-check-time-of-use (TOCTOU) attacks, Sec- 

omp BPF programs cannot dereference pointers ( sec, 2023 ). Con- 

equently, arguments passed to system calls can be restricted only 

ased on their absolute values. 

.3. Threat model 

We consider attacks against the OS kernel (and other contain- 

rs running on top of it) by an adversary who has gained access 

o a container by exploiting a vulnerability in the container’s tar- 

et application. The goal of our work is to reduce the adversary’s 

hances of escaping from the container. We do not focus on pre- 

enting the exploitation of applications running in the container. 

ny additional defenses implemented in the application or the OS 

re orthogonal to our approach, as we do not rely on any other 

rotection mechanism to be in place (except Seccomp BPF). 

Using Confine, attackers are restricted to a smaller set of sys- 

em calls with fewer features, which in turn limits the function- 

lity of exploit code. More importantly, kernel vulnerabilities that 

ould have been exploitable through the invocation of certain sys- 

em calls with certain arguments, now become unreachable. If the 
3 
ystem call that triggers a certain vulnerability is filtered, privilege 

scalation ( Li et al., 2017 ) and other attacks can be averted. 

. The need for static analysis 

Previous works ( Rastogi et al., 2017a; 2017b; doc, 2023; Wan 

t al., 2017 ) have used dynamic analysis to derive the list of sys- 

em calls used by a container. However, dynamic analysis is not 

ound, and thus can miss system calls along execution paths that 

ere not exercised during the training phase. To demonstrate this 

ssue, we manually analyzed Nginx and discovered three examples 

f system calls that would be missed if only dynamic analysis were 

sed. For our evaluation, we use Nginx with the Cache Manage- 

ent and Auto Index features enabled. 

Nginx spawns a separate cache-manager process to handle 

ache management. This process clears the older cached files when 

he cache is full using the unlink system call. Dynamically ana- 

yzing Nginx would capture the initialization of the cache-manager 

rocess, but would likely fail to capture the deletion of older 

ached files, and therefore fail to capture the use of the unlink 
ystem call. As the unlink system call is not invoked anywhere 

lse during the normal execution of the program, relying on train- 

ng alone would cause it to be marked as unused. Moreover, ex- 

ending the training phase for a longer duration would not solve 

he problem because the deletion of older files is triggered only 

hen the cache is full. Training would need to request enough new 

les to fill up the cache. Correctly setting up the training process 

o handle such situations is thus challenging. Figure 1 shows the 

arts of the control flow that are not discovered during training. 

Another example of failure to capture a system call is the use 

f lstat when displaying directory listings. Apart from this func- 

ionality, lstat is not used in any other part of Nginx. As listing 

 directory is usually triggered by users who manually type a URL, 

nd not by following any existing URL on a website, it is unlikely 

hat a training-based approach would be able to capture this sys- 

em call. 

In yet another case, the Nginx binary can be updated with a 

ewer version without dropping client connections. The system 

alls getsockopt and getsockname are used to hand over the 

xisting socket connections to the new process, and are not used 

nywhere else in the code, making it challenging for dynamic anal- 

sis to discover them. 

The above examples are indicative of the trade off between 

ragility and overapproximation faced by dynamic and static anal- 

sis. Relying on dynamic analysis alone would require the training 

o be comprehensive enough to anticipate and capture all above 

orner cases. In contrast, static analysis results are guaranteed to 

e sound, but may include system calls that are never invoked by 
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Fig. 2. Overview of Confine’s main processing steps. A one-time dynamic analysis phase that does not require any application-specific workloads is used for the sole purpose 

of identifying the applications running in the container. Each application is then statically analyzed to identify all the library functions that it uses, and the system calls it 

relies on, to generate a container-wide filter. Finally, a more restrictive application-specific filter is generated for the container’s target application. 
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ertain workloads. As we aim for a practical and generic solution, 

e opt for using static analysis to capture the superset of system 

alls used by an application. 

. Design 

Our goal is to reduce the kernel attack surface available to an 

ttacker of a container service by limiting the number of system 

alls available to each container, which can potentially be of use 

or malicious purposes (as a gateway to exploiting kernel vulner- 

bilities). To achieve this, Confine “hardens” the container image 

nce it has been fully configured by the user, by limiting its sys- 

em call access at three levels. First, Confine generates a container- 

ide system call filter that is applied to all programs launched in 

he container. Then, given the fact that most containers execute a 

ingle long-running program, it creates an application-specific sys- 

em call filter that removes all system calls needed solely during 

he initialization phase of the container. In its final step, Confine 

urther restricts the remaining system calls needed by the main 

rogram by limiting their argument values. 

Identifying the system calls and their argument values that are 

ecessary for the correct execution of the container and its main 

rogram requires addressing the following requirements: 1) iden- 

ify all applications that may run on the container; 2) identify 

ll library functions imported by each application; 3) map library 

unctions to system calls; 4) extract direct system call invocations 

rom applications and libraries; and 5) extract hardcoded argument 

alues for identified system calls. 

Figure 2 presents a high-level overview of Confine’s main pro- 

essing steps, discussed in detail in the rest of this section. Confine 

urrently supports the popular Docker containers running on a na- 

ive Linux-based host, but similar analysis could be performed for 

ther container environments and operating systems. 

.1. Identifying running applications 

Although containers are usually specialized to run a single ap- 

lication or service, they typically invoke many other utility and 

upport programs prior to executing the main program. For exam- 

le, the default MongoDB Docker image ( mon, 2023 ) invokes the 

ollowing supporting programs to set up the environment: bash , 
hown , find , id , and numactl . To generate container-wide sys- 

em call policies, we must thus identify all programs that can po- 

entially run during the lifetime of a container. 

We can use different techniques to identify the programs run- 

ing in a container: 1) Static analysis: extract all programs avail- 

ble in the Docker image; 2) Dynamic analysis: launch con- 

ainer and identify the programs it executes; and 3) Manual: the 

eveloper/end-user provides the list of programs. If we use the 

rst method and consider all the programs in a Docker image, the 

enerated system call profile would suffer severely from overap- 

roximation (i.e., filtering less than 80 system calls). Strictly relying 
4 
n the developer to provide the list of binaries also seems unnec- 

ssary since a container typically executes the programs it requires 

uring its initialization phase. Therefore, Confine relies on limited 

ynamic analysis to capture the list of processes created on the 

ystem. A profiling tool records every application launched within 

 configurable time period (30 seconds by default) since the cre- 

tion of the container—long enough to capture both system initial- 

zation, as well as the “stable” state of the system. The obtained 

et of applications is then used to derive the corresponding system 

all policy. 

However, since most programming languages give the program- 

er the ability to launch applications using special library calls 

e.g., execve ) and those invocations might not occur during our 

onitoring window, Confine may fail to analyze any executables 

aunched in this way. For these cases, currently, the developer is 

xpected to provide a list of binaries executed using such library 

alls. 

Our approach is different from previous works that rely on dy- 

amic training using various workloads to derive a list of allowable 

ystem calls ( Wan et al., 2017 ). In our approach, the goal of the dy-

amic analysis is merely to identify the set of binary executables to 

e analyzed—the system calls invoked by these programs are then 

erived statically. 

The above dynamic analysis is meant to be a convenient and 

utomated way to carry out the batch analysis of multiple con- 

ainer images. For containers that may include applications that 

re not launched from the beginning, our system supports man- 

ally provided external lists of executables that should be included 

n the analysis. 

.2. Static analysis 

Dynamic analysis often fails to exercise all possible code paths, 

specially when comprehensive workloads are not available dur- 

ng training. To ensure complete code coverage, once we have the 

ist of applications that are executed on the container, we per- 

orm static analysis to extract the system calls that are needed for 

he correct execution of each application. We combine the system 

all requirements of all these identified applications to generate 

 container-wide system call profile. Then, we use the extracted 

ystem calls for the main program to generate an application-level 

ystem call filter, and finally, restrict the system calls required by 

he main program even further by limiting their argument values. 

.2.1. System call identification 

Libc Function to System Call Mapping User programs typically in- 

oke system calls through the libc library, which provides corre- 

ponding wrapper functions (e.g., the libc function read invokes 

he system call SYS_read ). Confine analyzes the source code of 

ibc to derive a mapping between exported functions and the sys- 

em calls they invoke. For the rest of the programs and libraries 
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n a given container, however, Confine only needs to analyze their 

inaries . 

A libc function may have multiple control flow paths to the ac- 

ual system call. To correctly identify which system calls are in- 

oked by a given libc function, we thus need to analyze these con- 

rol flow paths. To that end, Confine statically analyzes the source 

ode of libc to derive its full callgraph, and accurately map each 

unction to its respective system calls. 

Function pointers are used widely in libc. However, performing 

ccurate points-to analysis has significant scalability and perfor- 

ance issues ( Andersen, 1994; Hind, 2001 ). To avoid having to per- 

orm points-to analysis, we follow a more conservative approach 

nd retain all system calls that are invoked through any function 

hat has its address taken. In Section 5.1 we discuss the technical 

hallenges we encountered during this process. 

Having an accurate mapping between libc functions and sys- 

em calls, it is then straightforward to analyze each program (main 

xecutable and libraries), identify all imported libc functions, and 

erive the set of all possible system calls the program may invoke. 

t is important to stress that this phase is performed only once per 

ibc version —the derived mapping is then saved and used across all 

ontainers. 

Direct System Call Invocation In addition to using libc wrappers, 

pplications and libraries may also invoke system calls directly us- 

ng the syscall() function, or using the syscall assembly in- 

truction. Although the number of applications and libraries which 

se this approach are limited, for the sake of completeness, we 

se binary code disassembly to extract any directly invoked sys- 

em calls. We describe in detail this process in Section 5.2 . 

.2.2. System call argument concretization 

We further reduce the exposed kernel attack surface by restrict- 

ng the values that may be passed as arguments to system calls 

hat cannot be filtered. To derive concrete argument values, Con- 

ne performs intra-procedural reaching definitions data flow anal- 

sis, starting from each argument at each invocation site. When the 

alue passed to a given argument can be identified across all its in- 

ocation sites of the respective system call, then Confine concretizes 

his argument by allowing only the given value (or set of values) 

o be passed. As discussed in Section 2.2 , Seccomp BPF does not 

upport pointer dereferencing, which prevents us from concretiz- 

ng pointer arguments. Given this limitation, Confine strives to re- 

trict flags and constant arguments, which fortunately are quite 

ommon. 

For direct system call invocations, reaching definitions analysis 

s performed on each of the six CPU registers that may be used to 

ass constant arguments, starting right before the syscall as- 

embly instruction. 1 For libc function call sites, we identify two 

ases. While an important subset of libc functions are wrappers, 

cting as a simple interface for invoking individual system calls, 

ther more complex libc functions (e.g., printf() ) internally in- 

oke several system calls to carry out the intended operation. 

Libc Wrapper Functions Most libc wrapper functions merely copy 

heir arguments (from the wrapper’s call site) and the correspond- 

ng system call number to the appropriate registers, and then in- 

oke the system call. Reaching definitions analysis is thus per- 

ormed at the call sites of wrapper functions to identify their ar- 

ument values. In most cases, there is a one-to-one mapping be- 

ween the arguments of a wrapper and the arguments of the sys- 

em call it internally invokes, but this is not always the case. To ac- 

urately derive this mapping, Confine performs (a one-time) intra- 

rocedural data flow analysis to identify how libc wrapper argu- 

ents flow into the internal system call invocation site. 
1 Confine currently supports only the x86-64 ABI, in which arguments are passed 

hrough registers. 

c

a

a

5 
Among the exceptions we identified as a result of this anal- 

sis, the clone() libc function modifies the order of the argu- 

ents prior to invoking the respective system call, while fork() 
nvokes the clone system call with hardcoded argument values. 

he mmap() function invokes its respective system call twice, once 

ith a set of hardcoded values, and a second time with the values 

assed to the wrapper function. 

Complex Libc Functions Some libc functions lead to the invoca- 

ion of several system calls, the arguments of which often do not 

epend on the function’s arguments. For example, fgets() in- 

ernally invokes several system calls, including mmap , write , and 

penat . To handle these cases, Confine could treat libc as any 

ther opaque binary executable and identify the hardcoded argu- 

ents of these internal system calls irrespectively of whether a 

iven control flow path will actually be executed. This would lead 

o a less restrictive argument-level filter due to the inclusion of 

ontrol flow paths that invoke system calls with concretized argu- 

ents, which though are only accessible from libc functions that 

re not imported (i.e., used) by the application or its libraries. 

Recall though that for libc we do have a more accurate call- 

raph, extracted at the source code level as a result of system call 

dentification ( Section 4.2.1 ). Confine thus leverages this callgraph 

o increase the accuracy of argument concretization by identifying 

he exported functions from which these control flow paths can 

ctually be executed, and includes their concretized system call ar- 

uments only in case those functions are imported by the main 

pplication or its libraries. 

For each internal path leading to a system call (either direct 

r through a wrapper function), we traverse the path to identify 

he function that invokes the system call. After identifying this 

unction, we perform the same reaching definitions analysis start- 

ng from its call site to identify the passed argument values. Al- 

hough we do assume that the source code of libc is available (for 

allgraph extraction), our data flow analysis implementation oper- 

tes at the binary level, and thus Confine performs the reaching 

efinitions analysis of complex libc functions at the binary level—

mplementing the same analysis at the source code level would not 

ffer any significant advantage in terms of accuracy. In most cases, 

he values of constant arguments are hardcoded at these internal 

all sites, and can be easily identified by our analysis. Therefore, 

onfine considers these concretized argument values only if the 

espective libc function is actually called by the target application. 

As an example, the following path extracted from the callgraph 

hows how the fgets function internally calls the __mmap 
rapper function: fgets → __libgcc_s_init → __libc_fatal → 

libc_message → __mmap → __mmap64 → mmap . Confine is able to 

xtract concrete values for the non-pointer arguments of the 

_mmap wrapper function ( prot and flags ) by analyzing its 

all site within the _libc_message function ( __mmap is a 

eak alias of the mmap wrapper, while __mmap64 is inlined; 

_libgcc_s_init, __libc_fatal, and _libc_message 
re internal, non-exported functions). 

.3. Hardening the container image 

.3.1. Container-wide filter enforcement 

Docker containers support the use of Seccomp filters to limit 

he system calls accessible from the container. The user can launch 

he container with a custom ruleset which specifies the system 

alls that can be accessed by the container. This ruleset can be ei- 

her in the form of a deny-list or an allow-list of system calls pro- 

ibited or permitted. For Confine, we use an allow-list of system 

alls that the container is permitted to invoke, blocking the rest. 

Based on the analysis performed in Sections 4.1 and 4.2 , we use 

n automated script to derive the list of prohibited system calls, 

nd construct the corresponding Seccomp profile. 
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Fig. 3. Many of the system calls required during a container’s initialization phase are not needed by the main long-running application ( mysqld in this example) and thus 

can be filtered. 
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.3.2. Application-specific filter enforcement 

While it is common for a container to execute different pro- 

rams to prepare the environment, it finally ends up running a sin- 

le target application that carries out the container’s main task. For 

xample, as shown in Figure 3 , the MySQL container ( doc, 2023a )

ventually runs mysqld after executing mkdir , find , mktemp , 
nd several other programs. While previous works ( Ghavamnia 

t al., 2020a; Wan et al., 2017 ) generate a container-wide Seccomp 

rofile for the entire container, we show that many system calls 

re only required for setting up the container, and can be safely 

ltered once the main program is ready to be launched. 

In its final step, Confine generates a Seccomp filter tailored to 

he container’s target application. Since Docker does not provide 

 mechanism to install new filters after the container is launched, 

e must use a non-intrusive mechanism to apply the application- 

pecific filter. Although it is possible to change an installed Sec- 

omp BPF program by modifying the Linux kernel ( Lei et al., 2017 ),

eploying such a technique would introduce significant deploy- 

ent hurdles, and is therefore not ideal. Another approach is to in- 

tall the application-specific filter upon launching the program by 

atching the target binary and direct its entry point to our added 

ode that installs the application-specific filter. Another alterna- 

ive would be LD_PRELOAD ( ld-, 2023 ), which can also be used 

o hook the main function of the binary. 

Instead of these more intrusive approaches, Confine uses an 

asy-to-deploy mechanism that installs the application-specific fil- 

er through a small “proxy” C program, which in turn executes the 

arget program. To that end, Confine modifies the container initial- 

zation script to replace the main target program (e.g., mysqld ) 
ith Confine’s proxy program, without altering the original initial- 

zation process. When the container attempts to execute the target 

rogram, Confine’s proxy program is launched instead, at which 

oint it installs the filter and then executes the actual target ap- 

lication. Using this approach, neither the program binary nor the 

ernel or the Docker daemon need to be modified. 

. Implementation 

To capture a trace of all invoked executables, Confine leverages 

ysdig ( sys, 2023 ) to monitor the execve calls made during the 

nitial 30 seconds (configurable value) of the container. After it 

enerates the list of programs the container runs, Confine further 

erforms static analysis to extract the list of system calls necessary 

or the correct execution of the container. 

To generate an application-specific filter, Confine must sepa- 

ately analyze the system call requirements of a container’s main 

ong-running program. Confine currently relies on the user to pro- 

ide the name of this program. The application name typically 
6 
atches the name of the Docker image (e.g., the Nginx image runs 

ginx as its main application). We plan to implement automated 

dentification as part of our future work, as the main application is 

he last one in the execution chain that remains running after the 

nitialization phase, and can thus be easily identified in an auto- 

ated way. 

.1. Mapping libc functions to system calls 

To ensure correctness, a precise libc function callgraph is re- 

uired to identify and filter unused system calls. Based on our 

nalysis of the top 100 most popular Docker images from Docker 

ub ( doc, 2023a ), we found that all containers use the popular 

libc library as their main user-space libc library. Therefore, we use 

libc to build a mapping between its functions and system calls. 

his is a one-time effort, and after we build the mapping, Confine 

ses it to analyze the system call requirements of each container. 

Glibc heavily relies on multiple GCC ( gcc, 2023 ) features that 

re not implemented in LLVM. Due to this issue, we implemented 

 second analysis pass to extract the callgraph and system call in- 

ormation from glibc, based on GCC’ register translation language 

RTL) intermediate representation (IR). Our callgraph extraction 

mplementation is based on the Egypt tool Gustafsson , which op- 

rates on GCC’s RTL IR. We discovered that there are three main 

echanisms through which glibc invokes system calls, explained 

elow. 

System Call via Inline Assembly and Assembly Files This is the 

ost straightforward mechanism for invoking system calls. Func- 

ions such as accept4() , which is responsible for accepting in- 

oming socket connections, contain inline invocations using the 

86-64 syscall instruction. Given the source code, the Egypt tool 

onstructs the function callgraph for any given application or li- 

rary. We augmented Egypt to iterate over every call instruction 

n the RTL IR and record any native x86-64 syscall instruc- 

ion. Similarly, assembly files may also contain syscall instruc- 

ions. Therefore, Confine performs code analysis at the assembly 

anguage level to identify all direct syscall instructions. 

System Call Wrapper Macros In addition to directly using the 

yscall instruction, glibc also uses macro expansion to generate 

rappers to system calls. Other glibc routines use these wrappers 

o invoke system calls. Because these wrappers are implemented 

s architecture-dependent (in our case x86-64) macros, they can- 

ot be retrieved by analyzing the RTL IR. Moreover, the parameters 

o these macros are provided by a bash script during compilation 

ime. 

The syscall-template.S file contains the macros 

_PSEUDO , T_PSEUDO_NOERRNO , and T_PSEUDO_ERRVAL , 
hich define wrappers to system calls. The list of system calls 
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o be generated, along with other information, such as sym- 

ol names and the number of arguments, are provided in the 

yscalls.list file. The Bash script make-syscalls.sh 
eads this file at compilation time, generates the correct 

acro definitions, and invokes the expansion of the macros 

n syscall-template.S . This script is invoked as part of the 

uild process of glibc. During the compilation of glibc, we trace 

he execution of this script and record the relevant macro defini- 

ions observed during its execution. Using these macros and macro 

efinitions, we derive the mappings between these wrappers and 

heir respective system calls. 

Weak Symbols and Versioned Symbols Glibc uses the 

eak_alias macro to define weak symbols for functions. 

CC supports symbol versioning, and glibc uses this feature to 

upport multiple versions of glibc. The versioned symbols are de- 

ned using the macro versioned_symbol . Both weak_alias 
nd versioned_symbol provide aliases for functions. Other 

unctions within glibc, as well as the applications using glibc, can 

nvoke these aliased functions either through the original function 

ame or its alias. We analyze the C source code to extract these 

liases, and add them to the callgraph. 

.2. Binary analysis 

Confine uses the Angr framework ( Shoshitaishvili et al., 2016 ) to 

erform binary code analysis for two main purposes. First, Confine 

ses Angr to identify the libc functions that are imported by all the 

nvoked programs and all their libraries. Second, Confine uses the 

FGFast analysis of Angr to extract the control flow graph (CFG) 

f the executables and their libraries. Confine relies on this CFG to 

dentify all the invocation sites of libc wrapper functions and direct 

ystem calls, and then to perform reaching definitions analysis on 

heir arguments to concretize their values. 

.2.1. Data flow analysis 

Confine leverages the Function Manager object (created by 

ngr during function recovery) to extract the basic blocks of each 

unction, and analyzes Angr’s intermediate representation (VEX 

R) to identify direct system call invocation sites and function 

all sites. The IR supports six types of jumps, represented by the 

umpkinds enum. Among the six, Confine uses the two that cor- 

espond to function calls ( Ijk_Call ) and direct system call in- 

ocations ( Ijk_Sys ). From the identified function call sites, Con- 

ne only considers those that target a glibc wrapper function or 

ts weak aliases. It selects them by comparing the call site tar- 

et addresses with the glibc function addresses collected by the 

unction Manager . 
After identifying all function call sites and system call invoca- 

ion sites, Confine performs backwards intra-procedural data flow 

nalysis to derive concrete values for the arguments passed at each 

all site. It employs the reaching definitions analysis pass of Angr 

or this purpose. This analysis requires an observation point to 

e defined for each register that is used for passing an argument 

alue. The analysis then extracts the address where each register is 

efined ( CodeLoc ) along with its possible value(s). For example, 

o identify the system call number of a direct system call invoca- 

ion, Confine defines an observation point for the rax register. We 

se the same technique to perform a one-time analysis of glibc for 

apping the arguments of wrapper functions to their respective 

ystem call arguments, and for identifying system call argument 

alues used by complex glibc functions. 

It is worth noting that Angr had limited support for some 

nstructions encountered in the programs of our data set (e.g., 

mpxchg ). We resolved this issue by extending its VEX execution 

ngine and implementing separate handlers for these instructions. 
7 
Wrapper Function Argument Mapping Within a wrapper function, 

e must ensure that its arguments flow unmodified to the system 

all invocation site. Since wrapper functions directly invoke their 

espective system call (without calling any other internal func- 

ions), performing intra-procedural analysis for them is sufficient 

o ensure that the mapping holds. 

Confine uses Angr to analyze glibc wrapper functions and iden- 

ify any modifications to the passed argument values before they 

re supplied to the corresponding system call. An observation 

oint is defined for each register used to pass a system call ar- 

ument, on which reaching definitions analysis is then performed. 

lthough the analysis attempts to identify the final instruction that 

ssigns a value to the register (as well as the value itself), the anal- 

sis may fail depending on whether the register is used or modi- 

ed within the function. 

If the register is not used nor modified in the function, Angr 

oes not return a valid output, which means that the register will 

e assigned a value that flows in from the wrapper’s caller. If the 

egister is used but not modified in the function, the analysis re- 

urns Undefined as the value of the register, and External for 

odeLoc (the address of the location where the register is as- 

igned). This output indicates that although the register is used 

n the function (e.g., to perform a comparison), its value again is 

ssigned outside the function. In both these cases the one-to-one 

apping between the wrapper’s and the system call’s arguments 

olds. 

If the register is modified inside the function, the returned 

odeloc is an address inside the function, and the one-to-one 

apping does not hold. In that case, a new observation point is 

efined on that address, and reaching definition analysis is per- 

ormed again. This process continues recursively until either i) the 

alue with which the register is initialized is reached, i.e., argu- 

ent value is hardcoded within the function; or ii) the recur- 

ive analysis returns Undefined , which means that the value is 

assed to the wrapper by the caller, i.e., the order of the argu- 

ents is modified by the wrapper prior to invoking the system 

all. For example, the clone() wrapper function moves the value 

f the r8 register (the fifth argument of the wrapper function) to 

he rdx register before invoking the clone system call. In such 

ases, Confine modifies the mapping accordingly. 

Complex Glibc Functions As mentioned in Section 4.2.2 , complex 

ibc functions often internally invoke several system calls (direct 

r through libc wrappers). Confine uses the glibc callgraph to map 

ach complex function to the system calls it may invoke, and then 

ses binary analysis to concretize their arguments. Since the glibc 

allgraph is generated by analyzing the source code, there are func- 

ions in the callgraph that do not exist in the final library due to 

ptimizations (e.g., function inlining). To minimize this inconsis- 

ency, we compile glibc using the lowest optimization level possi- 

le, so that the resulting binary code has the highest correspon- 

ence with the callgraph. 

To reduce Confine’s analysis time and improve usability, we use 

aching of intermediate analysis results extensively. For each en- 

ountered glibc version used by a container, the derived mapping 

etween glibc functions, their system calls, and their argument val- 

es, is generated only once, and is then stored for future use when 

he same glibc version is encountered in another container. This 

llows Confine to skip this part of the analysis most of the time 

nce a diverse-enough set of glibc versions has been encountered. 

.2.2. Dynamically loaded libraries 

An issue that requires special consideration is dynamic loading, 

 mechanism through which applications can load modules on de- 

and throughout their execution. The dlopen() , dlsym() , and 

lclose() API functions are used to load a library, retrieve its 

ymbols, and close it, respectively. Because these operations are 
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Listing 1. Example of a Docker Seccomp ruleset file. 
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erformed at runtime, any libraries loaded in this way cannot be 

dentified by looking at the application’s ELF binary header. For in- 

tance, Apache Httpd uses this feature to load libraries based on 

he user-defined configuration. Quach and Prakash (2019) showed 

hat only around 3% of the 3174 programs and 2% of the 4292 li-

raries analyzed in their dataset used these features, all of which 

oaded the required libraries during initialization. 

To identify such dynamically loaded libraries, we monitor the 

ist of libraries loaded by the application at runtime through the 

proc virtual file system, which provides this information for ev- 

ry process. 

One consideration is that if an application dynamically loads 

ibc, we cannot identify the individual functions imported by the 

pplication, and would have to retain all system calls made by libc. 

owever, it is unlikely that libc will be loaded in this fashion, as 

ynamic loading is used for modules that provide additional func- 

ionality to the application. We did not encounter any such case in 

ur experiments. 

.3. Seccomp profile generation 

Confine automatically generates Seccomp policies by classifying 

ll system calls present on the final list of required system calls 

s “permitted,” and assigning them to an allow list, denying any- 

hing not provided in this list. The Docker Seccomp ruleset re- 

uires the name of the allowed system calls, while our analysis 

f the containers generates system call numbers. Confine maps all 

he available system calls in the kernel to their respective num- 

er by using the symbol information related to the names of the 

ystem calls from the procfs pseudo-filesystem. Based on the 

ys/syscall.h header file, Confine maps the system call name 

o its number, and uses it to convert the permitted system call 

umbers to their names. Finally, Confine creates the Seccomp pro- 

le with an allow list containing these system calls and applies it 

o the container. 

.3.1. Container-wide filter enforcement 

Docker uses a JSON file to define the permitted system calls. 

isting 1 shows a sample ruleset which only allows the pwrite64 

ystem call. The default action for this ruleset is to deny all system 

alls, except those specified under the syscalls tag. Each system 

all is specified by three arguments: its name, the action, and its 

rguments. 

.3.2. Application-specific filter enforcement 

As discussed in Section 4.3.2 , we use a “proxy” C program to in- 

tall Confine’s application-level Seccomp profile. This program uses 
8 
he prctl system call to install the updated filter on the current 

rocess, and then invokes the target binary as part of the same 

rocess using the execve system call. We compile the proxy pro- 

ram statically to avert any failures due to library dependencies 

ot available in the container. This would mainly happen in Docker 

mages in which the programs have been statically linked with 

libc. Our proxy program itself requires a limited set of system 

alls to install the application-specific filter ( exit_group , brk , 
map , munmap , write , fstat , and execve ). Note that these 

ystem calls are required by most programs (24 containers in our 

ataset), and not filtering them does not reduce the security bene- 

t. We provide a more detailed discussion regarding these system 

alls and how their inclusion affects the security benefit of Confine 

n Section 7 . 

After we generate our Seccomp installation program, we need 

o modify the container to execute it instead of the main applica- 

ion, preferably without rebuilding the Docker image. Each Docker 

mage is built based on a Dockerfile . This file includes the infor- 

ation required to launch a container running the applications re- 

uested by the creator of the image. One of the variables speci- 

ed in this file is the entrypoint , which specifies the program to be 

xecuted upon launching the container. Most Docker images typi- 

ally use a bash script as their entrypoint. This script usually per- 

orms operations needed to prepare the filesystem or general set- 

ings (e.g., add a user, create a directory) for the correct execution 

f the final target program. We need to replace this script with 

ur own custom-built script, which performs operations needed by 

onfine and then invokes the original script. 

Confine’s custom script performs the following operations: 1) 

akes a backup of the main target binary; 2) overwrites the orig- 

nal binary with our proxy program; and 3) executes the original 

ntrypoint script. There are two ways to modify the entrypoint of a 

ontainer: change the Dockerfile and rebuild the image, or change 

he entrypoint temporarily when the container is launched. We use 

he second option, which is less intrusive and can be easily ap- 

lied to any Docker image, without having to worry about rebuild- 

ng the image itself. For example, the Nginx Docker image uses 

he docker-entrypoint.sh script as its entrypoint, which exe- 

utes the arguments passed to the container in its final step. These 

rguments are usually the name of the main binary along with 

ny arguments it may require. We modify the entrypoint at run- 

ime to execute our specially crafted script and then execute the 

ocker-entrypoint.sh script available in the original Docker 

mage. 

In cases where the Docker image does not have any bash pro- 

ram available to execute scripts (e.g., images based on Alpine 

inux) and the main program is executed instead as the entrypoint, 
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Fig. 4. Cumulative distribution of the number of filtered system calls as a percent- 

age of all tested Docker containers for container-wide and application-specific sys- 

tem call filtering. Application-specific filtering increases the average number of fil- 

tered system calls by 25%. 

t

o

n

t

k

o

c

c

o

a

t

s

o

f  

t

f

i

s

a

r

P  

i

c

t

t

a

I

d

i

b

l

s

t

b

w

w

t

w

6

c

e modify the entrypoint (using the runtime option) to directly 

aunch our proxy program. 

. Experimental evaluation 

To assess the security benefits of Confine, we used a base Linux 

ystem with kernel v5.4, which provides 335 system calls. We eval- 

ated Confine with 27 publicly available Docker container images 

vailable from Docker Hub ( doc, 2023a ). Due to the nature of our

pplication-specific system call filtering technique, we did not con- 

ider Docker images which are meant to be used as vanilla instal- 

ations for other applications to build upon. When launched, these 

ontainers either do not run any program at all, or only execute a 

hell. Instead, we only apply Confine to containers that run a tar- 

et long-running application, in which the initialization and post- 

nitialization phases actually differ. Also, we do not consider im- 

ges in which the main application is a Golang binary, as they are 

tatically linked, and as a result, the argument values cannot be 

xtracted by performing our intraprocedural analysis at system call 

nvocation sites. 

We ended up with these 27 Docker images after evaluating the 

op-100 official Docker images available on Docker Hub, and se- 

ecting the ones that i) execute a single target application (other 

han bash); ii) do not require any manual registration or payment 

n Docker Hub; and iii) are compatible with Angr for extracting 

he CFG for the invoked programs and its libraries (we encoun- 

ered just four images for which Angr failed to extract the CFG of 

he main executable). 

We only analyzed the top-100 official Docker images available 

n Docker Hub because as we mentioned in Section 5 , we require 

he developer to provide the name of the final binary to generate 

he application-specific filter. Therefore, we analyzed the top-100 

ocker images to reduce the manual effort required. 

To ensure that the generated system call policies do not break 

ny functionality, we performed additional validation runs. First, 

e check if the container does not exit abrubtly when being 

aunched with the specified Seccomp profile. As we mentioned in 

ection 5.3 , the Dockerfile specifies the application the container 

ust invoke upon launch. If this application exits (or crashes), the 

ontainer exits, and thus we verify that this does not happen. 

Even if the application remains running, however, it might still 

ncounter errors. For example, it might encounter exceptions that 

re gracefully handled by the application, but still cause problems 

n its correct operation. To capture these cases, we check the log 

les generated by the container. Docker provides a streamlined 

rocess of reading the logs produced by the containerized appli- 

ation. We compare the logs produced by the hardened container 

ith the default container. Because values in the logs, such as 

imestamps and process IDs, might differ between different exe- 

utions, we ignore these values. 

.1. Filtered system calls 

First, Confine automatically analyzes each container and ex- 

racts the list of system calls required by its binaries based on the 

nalysis described in Section 5.2 . Then, it generates a Seccomp fil- 

er to prohibit the use of all remaining system calls. Finally, we run 

he container on a Docker Engine, along with our filter, to validate 

he correctness of our analysis. 

We assess the effectiveness of our approach by measuring the 

umber of filtered system calls per container. Each system call is 

n entry point to some kernel functionality, and thus completely 

isabling a system call is equivalent to preventing the exposure of 

ulnerabilities in all relevant code of that kernel functionality (in 

ddition to prohibiting the use of that system call as part of mali- 

ious code)—we have measured the degree of attack surface reduc- 
9 
ion in terms of known CVEs that become neutralized and present 

ur results in Section 6.3 . We leave the actual removal of the ker- 

el code related to each system call as part of our future work, but 

he number of filtered system calls is indicative of the amount of 

ernel code that could potentially be removed. 

Figure 4 shows the cumulative distribution of the number 

f removed system calls across all containers in our dataset for 

ontainer-wide filtering and application-specific filtering. Confine 

an filter 144 system calls or more for half of the Docker images in 

ur dataset across the entire container. By differentiating between 

 container’s requirements during its initialization phase and af- 

er it starts executing the target application, Confine’s application- 

pecific filtering proves to be quite effective, increasing the number 

f filtered system calls further, by 25% on average. As an example, 

or the Nginx ( doc, 2023c ) and Apache Httpd ( doc, 2023b ) con-

ainers, applying container-wide filtering disables 159 system calls 

or Nginx and 176 for Apache, while application-specific filtering 

ncreases the number of filtered system calls to 204 and 203, re- 

pectively. 

As shown in Figure 5 (bottom two segments of each bar), 

pplication-specific filtering is more effective for containers that 

un many programs during their initialization phase. For example, 

ostgres ( doc, c2023e ) and Percona ( doc, 2023d ) have the highest

ncrease in the number of filtered system calls (63% and 51%), be- 

ause both rely on many utility programs (e.g., mkdir , awk , cat ) 
o set up the container environment for the correct execution of 

he main program. In contrast, Julia ( doc, 2023a ) does not have 

ny initialization scripts and directly executes the main program. 

ts slight increase in the number of filtered system calls (4%) is 

ue to the requirements of the Docker runtime itself, which still 

nvokes a few system calls needed to launch the container that can 

e safely filtered afterwards. 

Confine’s application-specific filter generation process fol- 

ows an approach similar to previous works that generate 

ystem call filters for binary executables, such as Sysfil- 

er DeMarinis et al. (2020) . However, Sysfilter fails to analyze li- 

raries that are not compiled with debug symbols. Since there 

ere libraries in our dataset that did not contain debug symbols, 

e were not able to perform a complete comparison with Sysfil- 

er. Furthermore, Sysfilter does not restrict system call arguments, 

hich is one of the contributions of our work. 

.2. Restricted system call arguments 

Restricting the allowable argument values of system calls that 

annot be filtered entirely still contributes in disabling parts of a 
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Fig. 5. Number of disabled system calls by container-wide (bottom part) and application-specific (middle part) filtering, and of restricted system calls by argument con- 

cretization (top part). 

s

r

G

t

s

c

fi

c

t

a

c

l

t

p

g

r

i

c

a

a

a

a

m

s

e

a

l

f

t

b

t

f

t

fl

u

r  

o

g

m

a

c  

b

P

w

g

c

a

i

g

6

s

p

c

w

2

e

c

c

k

c

t

i

o

b

a

b

c

c

q

b

a

i

T

t

fi

u

6

s

a

G

r

p

ystem call’s crucial functionality. Currently, Confine attempts to 

estrict 145 different constant arguments across 118 system calls. 

iven that Confine’s argument value inspection relies on conserva- 

ive, best-effort static analysis at the binary level, only a subset of 

ystem calls can be handled—those that conform to the following 

onditions: i) have at least one constant argument; ii) remain un- 

ltered across the majority of containers; and iii) their arguments 

an be mapped to the corresponding Libc functions. 

Going back to Figure 5 , the topmost segment of each bar shows 

he number of restricted (but not filtered) system calls for which 

t least one argument can be concretized. Confine restricts 421 

onstant arguments across the 27 containers. For example, Confine 

imits the request argument of the ioctl system call in 24 con- 

ainers. The Linux header file < sys/ioctl.h > contains several 

redefined values for the request argument. Concretizing this ar- 

ument results in the neutralization of most kernel vulnerabilities 

elated to built-in or additional devices. CVE-2019-6974 ( cve, 2019 ) 

s such a use-after-free vulnerability in the KVM hypervisor that 

an be triggered by calling ioctl with KVM_CREATE_DEVICE as 

n argument—one of the argument values that Confine prohibits 

cross all 24 containers. 

Other examples of restricted arguments include: the level 
nd optname arguments of setsockopt and getsockopt 
cross 10 and 16 containers, respectively, and the flags argu- 

ent of clone and mmap across 27 and 4 containers. More 

pecifically, for mmap , the flags argument can take 22 differ- 

nt values, which can also be combined with each other through 

 bitwise OR. Among these values, Confine disables nine, and al- 

ows only some combinations of the remaining 13 values in the 

our containers where mmap is restricted. Furthermore, among 

he disabled protocols for the socket system call is IPsec, set 

y the NETLINK_XFRM flag, which is filtered across seven con- 

ainers. This flag is associated with a heap buffer overflow flaw 

ound in IPsec, which may lead to a local privilege escalation at- 

ack ( cve, 2012 ). Also, the clone system call accepts 53 different 

ags and signals, but the 27 evaluated containers use only three 

nique combinations of them. Consequently, most vulnerabilities 

elated to clone ( cve, 2012; 2013 ) can be neutralized as a result

f Confine’s argument concretization. 

The Perl container has the lowest number of concretized ar- 

uments due to breadth and flexibility of the Perl API, as imple- 

ented in the libperl.so library. For example, setsockopt 
nd ioctl cannot be restricted because their argument values 

annot be identified in just one call site for each of them in this li-

rary. These call sites are located in the Perl_pp_ssockopt and 

erl_pp_ioctl functions, respectively, the arguments of which 
10 
ill become available only at runtime, depending on the user pro- 

ram that will invoke them. Language-level analysis of Perl scripts 

ould be used to identify those argument values, but this type of 

nalysis is beyond the scope of our work. We further discuss the 

mplications of performing this analysis for dynamically-typed lan- 

uages in Section 7 . 

.3. Security evaluation 

System calls are the main entry point into the kernel. While 

ecurity-critical system calls are typically used as part of ex- 

loit payloads ( Mishra and Polychronakis, 2020 ), any system call 

an be used to exploit a vulnerability in the kernel. Previous 

orks ( Kemerlis, 2015; Kemerlis et al., 2014; 2012; Pomonis et al., 

017 ) have shown that malicious users can attack the kernel and 

ither leak sensitive data or perform privilege escalation. In most 

ases, these attacks are performed by exploiting vulnerabilities ac- 

essible through system calls. Consequently, when considering the 

ernel’s attack surface, all system calls have potential for a mali- 

ious user. 

To demonstrate the security benefit of Confine, we measure 

he additional Linux kernel vulnerabilities mitigated due to filter- 

ng or restricting system calls. We consider vulnerabilities instead 

f proof-of-concept (PoC) exploits, because each vulnerability can 

e used by different PoCs. Mitigating a single vulnerability breaks 

ll PoCs that leverage it, while preventing any single PoC may not 

reak the rest. To that end, we need to identify vulnerabilities that 

an be exploited through the invocation of one or more system 

alls, and whether any specific system call argument value is re- 

uired for a successful exploitation. We built a two-level mapping 

etween system calls and vulnerabilities as follows. First, to derive 

 coarse-grained mapping, we scrape patches assigned to CVEs to 

dentify the functions that hold the root cause of a vulnerability. 

hen we use the Linux kernel callgraph to identify from which sys- 

em calls the vulnerable code can be accessed. Second, we derive a 

ne-grained mapping that considers the system call argument val- 

es that must be used to exploit an accessible vulnerability. 

.3.1. Coarse-grained syscall to CVE mapping 

To perform our analysis, we crawled the CVE web- 

ite ( cve, 2023c ) for Linux kernel vulnerabilities using a custom 

utomated tool. The tool parses each commit in the Linux kernel’s 

it repository to find the corresponding patch for a given CVE, and 

etrieves the relevant file and function that was modified by the 

atch. After mapping CVEs to their respective functions, we built 
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he Linux kernel callgraph and analyzed which parts of it can be 

xclusively accessed by a given system call. 

We constructed the Linux kernel’s callgraph using 

IRIN ( Zhang et al., 2019 ). This allows us to map which func-

ions in the kernel are invoked from which system call, and 

herefore reason about which part of the kernel’s code will never 

e invoked when a set of system calls are filtered. We discovered 

hat while there are only a few CVEs directly associated with the 

ode of filtered system calls, many CVEs are associated with files 

nd functions that are invoked exclusively by the code of filtered 

ystem calls. By matching the CVEs to the callgraph created by 

IRIN, we were able to pinpoint all the vulnerabilities that are 

elated to the set of system calls filtered by a given container. 

his provides us with a quantifiable property to assess the attack 

urface reduction achieved by our method, i.e., the number of 

VEs that would have been neutralized for a given container, if the 

espective system call policy generated by Confine was applied. 

Based on our coarse-grained analysis, in addition to the 25 CVEs 

itigated by Docker’s default Seccomp policy, 20 CVEs across all 

tudied containers are effectively removed (i.e., the respective vul- 

erabilities cannot be triggered by the attacker) by applying our 

enerated policies. One example is the recently disclosed “Dirty 

ipe” vulnerabilty ( cve, 2022 ) which is mapped to the splice and 

ipe system calls. An unprivileged local user could use this flaw 

o write to the page cache of a read-only file (e.g., /etc/passwd ) 
o escalate their privileges in the container. Then they could mis- 

se this privilege to escape the container and gain access to the 

nderlying host. Confine increases the number of containers in 

hich this system call is filtered from 19 for container-wide fil- 

ering ( Ghavamnia et al., 2020a ), to 26 by applying application- 

pecific filtering. 

.3.2. Fine-grained syscall to CVE mapping 

The coarse-grained CVE-to-system call mapping is not enough 

or assessing the added benefit of system call concretization. To 

eason whether disabling part of a system call’s functionality af- 

ects the exploitability of a given vulnerability, we gathered at least 

ne proof-of-concept exploit per CVE, and manually studied how 

he essential system calls and their arguments affect the success- 

ul operation of the exploit. We further expanded the set of ker- 

el CVEs with more recent exploits for which publicly available 

xploits are available. 

Using this process, we were able to map 42 CVEs to the crucial 

ystem calls and arguments necessary for their successful exploita- 

ion. As an example of our mapping, CVE-2016-3134 ( cve, 2016 ) is 

 vulnerability in the netfilter subsystem of the Linux kernel, which 

an only be triggered by invoking the setsockopt system call 

ith IPT_SO_SET_REPLACE as its third argument ( optname ). 
Given this set of 42 CVEs, Confine mitigates at least one of them 

n a container after applying argument concretization, and 28 of 

hich cannot be mitigated by container-wide filtering. As shown in 

igure 6 , application-specific filtering offers only a slight advantage 

ompared to container-wide filtering, but the addition of argument 

oncretization offers a significant improvement. In the best case, 

he number of mitigated CVEs for Telegraf increases from six to 32, 

hile in the worst case only five additional CVEs are mitigated for 

erl. These CVEs, which are mitigated due to applying argument 

oncretization, cannot be mitigated by other system call filtering 

pproaches ( Canella et al., 2021; DeMarinis et al., 2020; Ghavamnia 

t al., 2020a; Lei et al., 2017; doc, 2023; Wan et al., 2017 ) that do

ot restrict the system call arguments, because the container or 

pplication uses the respective system call. 

Table 1 provides a description of the CVEs blocked by Confine 

cross all containers, as well as the number of containers in which 

 given CVE is blocked. It is worth noting that CVEs related to the 

etsockopt , socket , and ioctl system calls cannot be mit- 
11 
gated by system call filtering alone. Confine manages to mitigate 

hese CVEs across 10, 14, and 24 containers, respectively, as a result 

f argument concretization. Overall, Confine mitigates 276% more 

VEs per container (22 CVEs on average) compared to container- 

ide filtering (seven CVEs on average). 

. Discussion and limitations 

In this work, we mainly focus on a container’s execution phases 

o show that even without complex analysis of the target program 

e.g., temporal system call specialization Ghavamnia et al., 2020b ), 

e can still generate restrictive system call filters and enforce 

hem using a ready-to-use, non-intrusive technique. It is possible 

o further restrict the final application by applying temporal sys- 

em call specialization ( Ghavamnia et al., 2020b ) after the binary 

nters its own serving phase. Applying configuration-based soft- 

are debloating ( Ghavamnia et al., 2022; Koo et al., 2019 ) could 

lso result in even more restrictive filters by removing unneces- 

ary features depending on the selected configuration options. We 

eave the integration of such techniques into Confine as part of our 

uture work. 

As we discussed in Section 6 , extracting system call filters for 

ynamically-typed languages (e.g., Perl, Python) is more compli- 

ated. These languages typically have an interpreter which pro- 

ides APIs for accessing the underlying OS features and system 

alls. Confine currently generates a system call profile for these 

anguages by considering all system call requirements of the inter- 

reter. Our approach suffers from overapproximation, because the 

ctual program may not require all the features of the interpreter. 

e can generate a more restrictive system call profile by analyzing 

he interpreter and its APIs. Saphire ( Bulekov et al., 2021 ) builds 

ore restrictive system call filters for PHP programs by analyzing 

he interpreter. This work shows performing more fine-tuned sys- 

em call filtering on dynamically-typed languages requires analyz- 

ng the interpreter. 

Furthermore, as we discussed in Section 4 , among the ap- 

roaches we could use to install the application-specific filter, we 

hoose the “proxy” program technique due to its low intrusiveness. 

owever, this approach requires the execve system call to re- 

ain non-blocked. In cases that the target program does not need 

xecve (only 3 among our containers), this becomes a security 

imitation of the proxy program approach, as execve could other- 

ise have been blocked. The binary patching approach (as men- 

ioned in Section 4.3.2 ), however, circumvents this issue at the 

ost of being more intrusive, requiring modification of the binary. 

witching among these two approaches is a matter of engineering 

ffort, and we plan to support both as part of our future work. 

We considered the top-100 official container images and se- 

ected only those that meet specific criteria, including the ability to 

xecute a single target application, without requiring manual regis- 

ration or payment on Docker Hub, and compatibility with Angr for 

xtracting the control flow graph (CFG) of the invoked programs 

nd their libraries. Therefore, we ended up with the 27 Docker im- 

ges mentioned in the Section 6 . Among the top-100 official con- 

ainer, there were 11 that executed more than one application in 

heir post-initialization phase. We did not apply our technique to 

hese Docker images, because they required more tuning to gener- 

te separate post-initialization Seccomp profiles for the different 

pplications that remain running. These were mainly containers 

hich executed programs developed using the Erlang ( doc, 2023a ) 

rogramming language. 

Among the rest, the Cassandra image ( doc, 2023a ) is the only 

ne that required some manual analysis of a script executed during 

ts post-initialization phase, which performs another set of opera- 

ions to prepare the environment before executing the target ap- 

lication. Confine could still harden the image by manually mod- 
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Table 1 

Number of containers for which a given CVE is blocked due to W: container-wide filtering, S: application-specific filtering, A: application-specific filtering with argument 

concretization. 

CVE ID System Calls Description W S A 

2022–27666 socket, setsockopt A heap buffer overflow flaw was found in IPsec can cause privilege gain via 

overwrite kernel heap objects 

0 0 7 

2022-0847 splice, pipe A local privilege escalation vuln. that allows an attacker to overwrite data in 

arbitraryread-only files 

19 26 26 

2019–6974 ioctl A use-after-free vuln. triggered by calling ioctl with kvm_ioctl_create_device 

as itsargument 

0 0 24 

2012–2127 clone Remote attackers can cause DOS via calling CLONE_NEWPID clone system call 0 0 27 

2013-1858 clone Improper handling in a combination of the CLONE_NEWUSER and CLONE_FS 
flags of clone system call allows local users to gain privileges 

0 0 27 

2009–4131 ioctl The EXT4_IOC_MOVE_EXT implementation in the ext4 FS allows overwriting of 

files 

0 0 24 

2009–4141 ioctl Privilege gain using UAF vuln. via vectors involving enabling O_ASYNC on a 

locked file 

0 0 23 

2010-0437 ioctl, socket DoS through an IPv6 TUN network interface 0 0 24 

2010–4077 ioctl Access sensitive information from kernel memory via a TIOCGICOUNT ioctl call 0 0 24 

2010–4158 socket, setsockopt Access sensitive information from kernel memory via a crafted socket filter 0 0 1 

2012-0207 socket Remote attackers can cause a DoS via IGMP packets 0 0 4 

2014–2851 socket Integer overflow in ping_init_sock function can cause a DoS or privilege 

gain 

0 0 4 

2014–5207 mount A vuln. in namespace.c can cause privilege gain or DoS via a remount of a bind 

mountusing MS_BIND flag 

10 25 25 

2016–3134 setsockopt A vuln. can cause privilege gain or DoS via an IPT_SO_SET_REPLACE 
setsockopt call 

0 0 7 

2009-1337 clone, execve A vuln. allows local users to send signal to a process and then launch a setuid 

app. 

0 0 27 

2010–3081 setsockopt, getsockopt A stack underflow vuln can lead to privilege gain by using the 

compat_mc_getsockopt function 

0 0 7 

2010–4258 clone, splice A vuln. can cause privilege gain via the clear_child_tid feature and the 

splice syscall 

19 26 27 

2009-0676 getsockopt Potentially sensitive information can be obtained from kernel memory via 

an SO_BSDCOMPAT getsockopt request 

0 0 7 

2016-1583 mmap, clone Crafted mmap syscall can lead to privilege gain and DoS 0 0 27 

2016–5195 madvise, mmap Race condition causes privilege gain due to incorrect handling of COW 

whichallows write to read-only memory 

0 0 6 

2016–4578 ioctl Sensitive information can be obtained from kernel memory via crafted use of 

theALSA timer interface 

0 0 24 

2016–4997 setsockopt, socket Vulnerability in the IPT_SO_SET_REPLACE and IP6T_SO_SET_REPLACE 
setsockoptimplementations can lead to privilege gain or DoS. 

0 0 7 

2016–8655 setsockopt Bug in the packet_set_ring and packet_setsockopt functions can lead 

to privilegegain or DoS 

0 0 3 

2016–9793 setsockopt The sock_setsockopt function can lead to DoS by a crafted setsockopt syscall 0 0 5 

2017–15649 setsockopt, socket Vulnerability in af_packet.c leads to privilege gain via crafted syscalls 0 0 10 

2017–16939 setsockopt, socket SO_RCVBUF setsockopt syscall and XFRM_MSG_GETPOLICY Netlink msg leads 

to privlegegain or DoS 

0 0 4 

2017–2671 socket Access to the protocol value of IPPROTO_ICMP in a socket syscall can cause DoS 0 0 4 

2010–4165 setsockopt, socket Improper handling of TCP_MAXSEG values in do_tcp_setsockopt causes DoS 

via asetsockopt call 

0 0 2 

2019–9213 mmap Improper check of mmap min. address in expand_downwards allows 

exploitation of nullptr derefs 

0 0 4 

2009–2767 clock_nanosleep DoS or privilege gain due to CLOCK_MONOTONIC_RAW clock_nanosleep call 3 8 8 

2012-0957 uname, personality The override_release function allows information to be obtained 

fromkernel memory via a uname and a UNAME26 personality syscall 

27 27 27 

2014–3631 add_key Multiple keyctl newring operations followed by a keyctl timeout operation can 

cause DoS 

19 27 27 

2016-0728 keyctl The join_session_keyring function can lead to privilege gain or DoS via 

crafted keyctl commands 

24 27 27 

2017–7533 inotify_add_watch, inotify_init1 Race condition leads to privilege gain or DoS by leveraging simultaneous 

execution of the inotify_handle_event and vfs_rename functions 

23 25 27 

2019–11599 mmap, ioctl Race condition allows information leak or DoS by mmget_not_zero or 

get_task_mm calls 

0 0 24 

2012–3375 epoll_ctl Improper handling of EPOLL_CTL_ADD operations can lead to DoS 1 1 1 

2011-1082 epoll_create Crafted application that makes epoll_create and epoll_ctl syscalls can 

cause DoS 

1 1 1 

2014–4014 chmod Vulnerability allows bypass of intended chmod restrictions 1 2 3 

2014–7822 splice Crafted splice syscall can cause DoS 19 26 26 

2017–11176 socket Attackers can cause DoS by using a user-space close of a Netlink socket 0 0 4 

2017–5123 waitid Insufficient data validation in waitid allowed an user to escape sandboxes on 

Linux 

20 22 22 

2009-1527 ptrace Race condition in the ptrace_attach function can lead to privilege gain via 

a PTRACE_ATTACH ptrace call 

24 24 24 

12 
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Fig. 6. Our fine-grained system call to CVE mapping shows that while application-specific filtering only slightly increases the number of mitigated kernel CVEs compared 

to container-wide filtering (left and middle bars), the addition of system call argument concretization in many cases more than doubles the number of mitigated CVEs per 

container (rightmost bars). 
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fying the final script to execute our specially-crafted C program 

nstead of the main application. Additionally, we encountered only 

our images for which Angr was unable to extract the control flow 

raph (CFG) of the main executable. Of the remaining Docker im- 

ges, they were intended as vanilla installations for other applica- 

ions to build upon, and thus did not meet our specific criteria for 

valuation. 

. Related work 

System call policy generation through static source code anal- 

sis has been a widely used approach in the fields of host-based 

ntrusion detection ( Feng et al., 2004; Forrest et al., 1996; Jain and 

ekar, 20 0 0; Kruegel et al., 2005; Parampalli et al., 2008; Wag- 

er and Dean, 2001 ) and sandboxing ( Garfinkel et al., 2004; Ra- 

agopalan et al., 2005 ). However, these previous works target pro- 

rams from more than twenty years ago which were less compli- 

ated and mostly used static linking. Furthermore, they either do 

ot restrict the argument values passed to system calls at all, or 

se dynamic analysis and anomaly detection to extract the used 

alues of the system call arguments. This can cause soundness is- 

ues and break the target program. 

Given that the main focus of our work is on attack surface re- 

uction, and that programs nowadays have become much more 

omplicated, we discuss more recent related works in this context. 

.1. Container security and debloating 

Given the increased use of containers, previous works 

ave focused on evaluating the security of container environ- 

ents ( Combe et al., 2016; Lin et al., 2018; Shu et al., 2017 ) and

educing attack surface by applying more restrictive security poli- 

ies ( Findlay et al., 2021; Loukidis-Andreou et al., 2018 ), or splitting 

hem into smaller containers ( Rastogi et al., 2017a; 2017b ). 

Generating system call policies for containers has also been ex- 

lored by prior work. Wan et al. (2017) and DockerSlim ( doc, 2023 )

pply dynamic analysis to container hardening. They profile appli- 

ations running in the container to extract the set of system calls 

hey use and generate corresponding Seccomp filters. DockerSlim 

lso removes files which are unused during the profiling. 

Speaker ( Lei et al., 2017 ) is another system that relies on dy-

amic analysis to extract a container’s system calls requirements. 

imilarly to Confine, Speaker considers the two execution phases of 

 container, and generates a boot-time and runtime Seccomp pro- 

le. The main difference com pared to our work is that Confine uses 
13 
tatic analysis to identify the required system calls, and more im- 

ortantly, Speaker uses a more intrusive mechanism to apply the 

pplication-specific Seccomp profile, by modifying the Linux ker- 

el. 

In general, all the works mentioned in this section rely solely 

n dynamic analys to extract system calls, while our approach 

enerates system call policies using static code analysis. In addi- 

ion, Confine also performs argument concretization, a feature that 

o the best of our knowledge is not supported by any previous 

ontainer hardening approach. Therefore, comparing our approach 

ith these related works would not be fair to directly compare 

hem. 

.2. Application debloating 

Many of the prior works on software debloating have focused 

n removing excessive code from individual processes. Various 

tatic and dynamic code analysis techniques have been proposed 

or debloating of software developed in different programming lan- 

uages, including C/C++ ( Agadakos et al., 2019; Alhanahnah et al., 

021; Ghaffarinia and Hamlen, 2019; Heo et al., 2018; Mulliner 

nd Neugschwandtner, 2015; Porter et al., 2020; Qian et al., 2019; 

020; Quach et al., 2018; Sharif et al., 2018; Song and Xing, 2018 ),

ava ( Jiang et al., 2016; Suparna Bhattacharya and Nanda, 2013; 

ufei Jiang and Liu, 2016 ), and PHP ( Amin Azad et al., 2019 ). 

Similar to Confine, Shredder ( Mishra and Polychronakis, 2018 ) 

estricts system calls by limiting their arguments, but focuses on 

indows applications and modifies the user-space system call in- 

erface to enforce the restriction. Saffire ( Mishra and Polychron- 

kis, 2020 ) also applies argument-level filtering by generating spe- 

ialized versions of library functions. In contrast to Confine, it 

eeds the source code of the application to perform its analysis. 

Sysfilter ( DeMarinis et al., 2020 ) and Chestnut ( Canella et al., 

021 ) both apply binary analysis to identify the system call re- 

uirements of a given application. However, neither apply any re- 

trictions for the system call arguments. Temporal system call spe- 

ialization ( Ghavamnia et al., 2020b ) takes the execution phase of 

erver applications into account and creates two separate filters for 

ach phase. However, it requires the source code of the application 

o perform pointer analysis and apply pruning on the application 

allgraph. 

.3. Kernel debloating 

There have been several works that focus on minimizing the 

ernel’s footprint and customizing its code according to user re- 
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uirements. KASR ( Zhang et al., 2018 ) and Face-Change ( Gu et al.,

014 ) use dynamic analysis to generate kernel profiles based on 

he requirements of a single application. Then they use virtual- 

zation mechanisms to limit each application to its pre-generated 

rofile. Shard ( Abubakar et al., 2021 ) combines static and dynamic 

nalysis to generate kernel profiles per application and per system 

all. Kurmus et al. (2013) propose a system for the automated gen- 

ration of kernel configuration files for tailoring the Linux kernel 

o special workloads. 

. Conclusion 

Our work was motivated by the lack of a generic solution for 

he automated generation of restrictive system call policies for con- 

ainer environments—one that does not rely on training with real- 

stic workloads, which is a cumbersome and error-prone method. 

urthermore, our work shows that further attack surface reduc- 

ion is possible by i) moving from container-wide to application- 

pecific system call policies, and ii) filtering not only at the sys- 

em call level, but also at the system call argument level. Defer- 

ing the installation of the filter from the launch time of the con- 

ainer to the launch time of the container’s target application in- 

reases the number of system calls that can be filtered, as those 

hat are required during the container’s initialization phase but 

re not needed by the target application can be safely removed 

ight before the application is launched. In addition, the function- 

lity of the remaining system calls can be limited by concretizing 

hen possible the arguments of system calls according to the val- 

es passed to these system calls by the program. 

We have implemented these capabilities in Confine, which au- 

omates the whole process by scanning a container image and gen- 

rating a container-wide system call policy and an application- 

pecific system call policy that is transparently enforced, without 

he need to modify the kernel or the target application. The results 

f our experimental evaluation show that moving from container- 

ide to application-specific filtering increases the number of fil- 

ered system calls by 25% on average, while argument concretiza- 

ion results in the neutralization of more Linux kernel CVEs com- 

ared to plain system call filtering. 
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