
KubeKeeper: Protecting Kubernetes Secrets Against Excessive Permissions

Maryam Rostamipoor
Stony Brook University

mrostamipoor@cs.stonybrook.edu

Aliakbar Sadeghi
Stony Brook University

alisadeghi@cs.stonybrook.edu

Michalis Polychronakis
Stony Brook University

mikepo@cs.stonybrook.edu

Abstract—Kubernetes has become the dominant platform for
managing containerized applications, but its native Secrets
management mechanisms introduce security vulnerabilities,
especially in environments where third-party applications
may have excessive permissions. In this paper, we present
KubeKeeper, a comprehensive solution for protecting Ku-
bernetes Secrets against leakage due to excessive permissions.
KubeKeeper automatically encrypts Secrets and ensures that
only explicitly authorized Pods can access their decrypted
form. This is achieved by integrating with Kubernetes’
admission control framework to transparently enforce ac-
cess policies, without requiring changes to application code
and with minimal integration effort into existing cluster
infrastructure. We evaluated KubeKeeper on a diverse set
of 498 Kubernetes applications and demonstrate that it
successfully protects Secrets against all identified excessive
permissions, without introducing performance degradation
during execution or any significant overhead during Pod
creation and deployment.

Index Terms—cloud computing, Kubernetes, excessive per-
missions, Secrets management

1. Introduction

Kubernetes is a widely adopted platform for automating
the deployment, scaling, and management of container-
ized applications [51]. Practitioners adopt Kubernetes due
to its ability to reduce the repetitive manual processes
traditionally involved with container deployment and man-
agement [82]. As one of the most popular open-source
container orchestration tools, Kubernetes is widely used
by major organizations and governments [6], [48].

Despite its strengths, Kubernetes introduces significant
security challenges—particularly in the management of
sensitive data such as authentication tokens, cryptographic
keys, and user credentials. To handle such sensitive data,
Kubernetes introduces the concept of Secrets [32], a special
type of object that helps developers to ensure that confi-
dential data is not included in application code. However,
the native Secrets management mechanisms in Kubernetes
have several limitations, especially in deployments that
include third-party applications [56], [69], [76], [92].

By default, Secrets are stored in etcd (Kubernetes’
key–value store) in plaintext form. Although encryption
at rest is supported, it is not enabled out of the box
and lacks critical features, such as key rotation and
audit logging. Moreover, Kubernetes’ Role-Based Access
Control (RBAC) [54] provides coarse-grained controls. A

user or Service Account can be granted get or list
permissions on Secrets, but these permissions give access
to the full decrypted values. Kubernetes lacks a zero-trust
model in which users can store Secrets without having
direct access to their plaintext content [56].

Another major issue lies in how Kubernetes ties Secrets
to workload deployment. Kubernetes does not prevent Pods
from mounting any Secret in the same Namespace. This
means that if a user or Service Account has permission to
create Pods—or higher-level resources like Deployments
or DaemonSets—it can indirectly access Secrets by con-
figuring the workload to mount them, even if it lacks
direct read access via RBAC [4], [9], [10], [14]. This gap
can be exploited by both compromised applications and
overprivileged internal users.

These risks are amplified by third-party applications,
which are often deployed with insecure default configu-
rations. These defaults typically grant excessive permis-
sions—such as cluster-wide Secrets access or Pod creation
capabilities [92]. These default settings can bypass best
practices for access control and unintentionally expose Se-
crets to unauthorized workloads. Yang et al. [92] analyzed
the security of third-party applications and observed that
they often receive excessive permissions, which can be
exploited to compromise Secrets. A recent vulnerability in
the widely deployed ingress-nginx Controller (used
in over 40% of Kubernetes clusters) further illustrates
the severity of this issue. Under certain conditions, an
unauthenticated attacker with network access could achieve
arbitrary code execution in the Controller’s context, leading
to the disclosure of any Secrets it could access—by default,
all cluster-wide Secrets.

Due to the current limitations in Kubernetes’ Secrets
management, it is challenging to automatically prevent
these excessive permission risks without impacting appli-
cation functionality. A common recommendation is to del-
egate Secrets management to an external Key Management
Service (KMS) [13], [36], [47], which offers fine-grained
access control over encryption key usage. KMS platforms
do not fully mitigate the risks associated with excessive
permissions. While KMS platforms typically support fine-
grained access control, they cannot prevent workloads from
mounting Secrets, and security still depends heavily on cor-
rect access control configuration—with misconfigurations
remaining a common issue.

As a step towards mitigating the Secrets management
limitations of Kubernetes, in this paper we propose Kube-
Keeper, a novel approach that provides more fine-grained
control over Secrets to prevent unauthorized access due to
excessive permissions or insecure default configurations.

KubeKeeper enhances Kubernetes’ Secrets management by
encrypting Secrets with unique keys, and tightly controlling
their decryption. While encrypted Secrets remain accessible
under existing access control mechanisms (i.e., RBAC) and
within the defined Namespace scope, their decryption is
tightly controlled.

Each Secret is created with a specific purpose and
designated resources in mind. Therefore, during application
deployment, it is clear which resources are needed to use a
defined Secret. Additionally, should new resources require
access to these Secrets, they can be accommodated by
updating the list of authorized resources. KubeKeeper uses
an automated approach to identify all authorized resources
for each Secret during application deployment. Decryption
keys are then granted exclusively to the specific Pods that
have been explicitly authorized during a Secret’s deploy-
ment or update process. This ensures that unauthorized
resources, whether through direct or indirect access, can
only retrieve the encrypted version of Secrets.

KubeKeeper is designed to leverage the Admission
Control mechanism of the Kubernetes API server. The
key components of KubeKeeper are implemented as dy-
namic Admission Webhooks, which are responsible for
encrypting Secrets and distributing encryption keys to
authorized resources. A primary goal of KubeKeeper is to
provide practical protection without imposing a burden on
developers. To that end, it does not require any changes
to application source code, and only minimal high-level
configuration adjustments.

To evaluate KubeKeeper, we analyzed a diverse set
of 498 applications (some of which have been used in
previous studies [78], [92]), which we extended for our
analysis. As part of our evaluation, we developed a tool
that scans the YAML configuration files of applications to
automatically identify and highlight excessive permissions,
offering a more efficient and reliable analysis compared to
existing tools [49], [92], which require manual installation
on live clusters.

Our results show that 202 out of the 498 applications
(41%) have excessive permissions that can lead to unautho-
rized access to their Secrets. Notably, 1,866 permissions
across 84% of these vulnerable applications provide direct
access to Secrets, while 3,068 permissions in 79% of them
provide indirect access to Secrets by controlling resource
deployment. KubeKeeper protects Secrets against all iden-
tified instances of excessive permissions. Our performance
evaluation results indicate that KubeKeeper introduces no
application runtime overhead, and no significant overhead
during Pod creation and deployment.

In summary, we make the following main contributions:
• We designed and implemented KubeKeeper, a

Kubernetes Secrets protection approach that trans-
parently encrypts Secrets and tightly controls their
decryption, to prevent unauthorized access due to
excessive permissions or insecure default configu-
rations. KubeKeeper does not require any changes
to the source code of applications.

• We developed a tool that builds and scans Kuber-
netes YAML configuration files to automatically
identify excessive permissions that can lead to
direct or indirect unauthorized access to Secrets.

• We experimentally evaluated KubeKeeper on a
diverse set of 498 Kubernetes applications and

demonstrate its successful protection of Secrets
against all identified excessive permissions, with-
out causing any performance degradation during
execution or significant overhead during creation
and deployment.

Our implementation, along with the full dataset of
collected applications used in our experimental evaluation,
is publicly available as an open-source project at https:
//github.com/mrostamipoor/KubeKeeper.

2. Background

2.1. Kubernetes Architecture

Kubernetes (K8s) [51] serves as a platform that man-
ages the orchestration, scaling, and administration of
containers. It enables efficient service and application
management through declarative configurations and au-
tomation, making it essential in modern cloud computing
environments. A Kubernetes cluster [1] consists of a set
of Nodes that correspond to either virtual or physical
machines. Kubernetes runs workloads by placing containers
into Pods that operate on these Nodes. Master Nodes
(forming the Control Plane) and Worker Nodes are the
main types of Nodes within a Kubernetes cluster.

A Master Node consists of the following components:
API Server, Scheduler, Controller, and etcd. The API
Server is the core of the Kubernetes Control Plane, ex-
posing an API for cluster management and security [2].
Containers programmatically interact with Kubernetes
resources via the exposed RESTful API, using a Service
Account for authentication. This is a special type of account
that provides an identity for containers running in a Pod
to interact with the Kubernetes API Server [18]. The
Scheduler [26] assigns newly created Pods to available
Worker Nodes, while the Controller [19] monitors and
adjusts the state of the cluster. A highly available key–
value store is provided by etcd [44], which keeps all
configuration information for the whole cluster.

Worker Nodes contain components such as Kubelet,
Kube-proxy, and Pods. Kubelet [24] manages the lifecycle
of Pods and containers, translating Kubernetes commands
into Docker commands when applicable. Kube-proxy [22]
maintains network rules for the internal and external
network communication to and from the Pods. The smallest
deployable unit of computing in Kubernetes is the Pod [50],
which typically consists of one or more containers. Pods
have a defined lifecycle, meaning that if a Pod fails due
to a Node fault, Kubernetes treats this as final condition,
requiring a new Pod to be manually created. To automate
this process, Kubernetes provides workload resources [15]
that automatically manage Pod lifecycles and maintain
the desired cluster state. These include Deployment, Repli-
caSet, StatefulSet, DaemonSet, Job, and CronJob [51], each
designed to handle specific scenarios and requirements.

2.2. Kubernetes API Server

The Kubernetes API Server plays a central role in man-
aging and securing a cluster by processing and validating
all API requests. It uses several modules, including Authen-
tication, Authorization, and Admission Control, that enforce

https://github.com/mrostamipoor/KubeKeeper
https://github.com/mrostamipoor/KubeKeeper

a multi-layered security policy [3], [12]. Each request is
authenticated to verify the user or Service Account identity.
Upon successful authentication, the request is subjected to
authorization checks, typically through Role-Based Access
Control (RBAC) [54]. Kubernetes RBAC is a key security
control that ensures users and Service Accounts can only
access the resources they need according to their Roles.

The RBAC API defines four types of Kubernetes ob-
jects: Role, ClusterRole, RoleBinding and ClusterRoleBind-
ing. An RBAC Role contains rules that set permissions
within a specific Namespace, while a ClusterRole, in
contrast, is a non-namespaced resource that defines per-
missions on cluster-scoped resources. Namespaces
provide a mechanism for isolating groups of resources
within a single cluster. Finally, Admission Control modules
intercept requests and evaluate them to ensure they comply
with specific cluster policies before an object is persisted.
Admission Control involves two distinct Mutating and
Validating phases. Mutating Controllers can alter objects
associated with the requests they process, whereas Validat-
ing Controllers only validate a request based on the defined
policy. In addition to compiled-in Admission plugins,
custom Admission plugins can be developed as extensions
and run as Webhooks configured at runtime.

2.3. Kubernetes Secrets

A Kubernetes Secret is an object that stores sensitive
data, such as passwords, tokens, and cryptographic keys.
Instead of embedding sensitive data objects in Pod specifi-
cations or container images, Secrets allow developers to
securely expose them to applications in Pods through envi-
ronment variables, or by mounting them as volumes [32].

Kubernetes Secrets often contain security-critical data,
such as Service Account tokens, credentials, and API keys.
If leaked, these Secrets can compromise not only workloads
within the cluster but also external services. To reduce
risk, a Secret is only sent to a Node if a scheduled Pod
explicitly requests it, and each Pod can access only its own
mounted Secrets. To prevent Secrets from being written to
persistent storage when mounting Secrets into Pods, the
Kubelet stores a copy of the data in tmpfs, which is a
temporary file storage facility [32].

3. Secret Management Limitations

Kubernetes’ native Secrets management has several
limitations that hinder secure, least-privilege access. By
default, Secrets are stored unencrypted in etcd, and even
with optional encryption at rest enabled, Kubernetes does
not provide built-in support for key rotation. Permissions
like get and list allow full access to decrypted Se-
crets via the API server, with no mechanism to enforce
encrypted-only access. Even if access is restricted to
specific Service Accounts [33], users with Pod creation
privileges can simply assign a privileged Service Account
to a new workload and bypass these protections.

Kubernetes also lacks mechanisms to control which
workloads can mount which Secrets. While RBAC controls
who can create, read, or delete resources through
the API Server, it does not provide fine-grained control
over workload configurations, such as restricting which
Secrets a Pod can mount [4], [9], [10], [14].

API Server

1. Compromise the container
and escapes to access the pod

2. Escape the pod and
steal the CubeFS4 token

3. Retrieve the
admin token

5. Deploy a malicious pod using
the admin token

W
or

ke
r N

od
e

6. Deploy the
malicious pod

M
as

te
r N

od
e

Kubernetes Cluster

4. Fetch the
admin token

cfs-csi-node

cfs-csi-node

W
or

ke
r N

od
e

Figure 1: Attackers can control a Worker Node and
exploit the CubeFS4 Service Account to further exploit
the cluster by stealing the cluster administrator’s Secrets
and deploying a malicious Pod.

As a result, a significant security concern arises when
users or Service Accounts are granted permissions to
create Pods within a Namespace, either directly or through
higher-level resources like Deployments [32]. While these
permissions do not provide direct access to Secrets via
the API, they allow users to configure workloads that
mount any Secret in the Namespace [7], [32], potentially
leading to unauthorized access. This architectural gap
means developers and CI/CD pipelines may unintention-
ally—or maliciously—access sensitive Secrets without
direct API permissions. These risks are exacerbated by
common misconfigurations. Our analysis, which builds
on the dataset from Rahman et al. [78], reviewed 54
Kubernetes clusters and found 88% of them containing
one or more Secrets improperly bound to the default
Namespace instead of specific ones. This allows a Pod
within the default Namespace to mount any defined Secrets
and gain (potentially unauthorized) access to them.

This challenge is made worse by the complexity of
RBAC configuration. In dynamic or large-scale environ-
ments, defining fine-grained rules is error-prone and often
leads to over-permissioning. This issue becomes even more
critical in the context of third-party applications, which
often come with default settings that grant them more
access than necessary, significantly increasing the potential
for security breaches. Yang et al. [92] identified numerous
instances of third-party applications with excessive critical
permissions. The study assumes an attacker who gains
control of a Worker Node and attempts to compromise the
entire cluster. Given the prevalence of application compro-
mises and container escapes [64], [70], [73], [79], [83],
[88]–[91], a malicious actor with access to a containerized
application can exploit vulnerabilities in the host OS kernel
to escape from the container and compromise the Worker
Node. Once the Node is compromised, the attacker can
misuse the permissions of third-party applications running
on the compromised Node with default settings to bypass
the deployed isolation mechanisms and take control of the
entire cluster or access Secrets.

TABLE 1: Mapping of Secret-Compromising Permission Types to RBAC Permissions.

Permission Type Verbs Resources

Direct Access via Secret Permissions get, watch, list, * secrets, serviceaccounts/token

Indirect Access via Secret Manipulation patch, update secrets, serviceaccounts/token

Indirect Access via Resource Scheduling Control create, patch, update, * pods, daemonsets, deployments,
statefulsets, replicasets, cronjobs, jobs

Indirect Access via Node Manipulation patch, update, * nodes

3.1. Secret Exposure via Excessive Permissions

Different types of excessive permissions can enable a
range of attack strategies, each posing a risk of unautho-
rized access to Secrets. First, an attacker could exploit
the excessive permissions of a third-party application
on a Worker Node to directly steal cluster administrator
privileges. These excessive permissions typically provide
direct access to Secrets.

An illustrative example presented by Yang et
al. [92], involves CubeFS4 [37], an open-source cloud-
native file storage system hosted by the Cloud Native
Computing Foundation (CNCF) as an incubating
project. CubeFS4 includes a critical DaemonSet
(cfs-csi-node) which deploys a Pod on each Node
of a cluster. This critical DaemonSet uses a Service
Account named cfs-csi-service-account,
assigned with the cfs-csi-cluster-role via the
cfs-csi-cluster-role-binding. This role grants
it get permissions for Secrets resources. Consequently, on
a compromised Worker Node, attackers could obtain each
Pod’s Service Account token (including the DaemonSet’s
Pod) through the path /var/run/secrets/
kubernetes.io/serviceaccount/. They could
then exploit the excessive permissions of the token to
directly obtain the cluster administrator’s Secrets, allowing
them to escape from the Worker Node and compromise
the entire cluster, as illustrated in Figure 1.

Alternatively, the attacker might hijack critical compo-
nents of the same or another application, which have direct
access to Secrets. The attacker must leverage excessive
permissions of resources like Daemonsets to force the
privileged component to operate on the compromised
Node. Again, this indirect method would also enable the
attacker to gain administrator permissions. This scenario
is similar to the previous example. The only difference
is that the attacker exploits excessive permissions of a
Service Account token to deploy an authorized resource
on the compromised Node, and then uses the token of this
authorized resource to perform the further steps mentioned
in Figure 1. Based on these strategies, we identify four
types of permissions that can lead to direct or indirect
access to Secrets. The mapping of these permission types
to corresponding RBAC rules is shown in Table 1.

1) Direct Access via Secrets Permissions: Permissions
like get, watch, list, or * on Secrets allow a Service
Account’s token to be misused to fetch Secrets through
the API server.
2) Indirect Access via Secrets Manipulation: An at-
tacker can modify a Secret’s ownership with patch or
update on Secrets or serviceaccounts/token to
grant attacker-controlled resources access to it.

3) Indirect Access via Resource Scheduling Control:
Permissions to create, patch, update, or * on work-
load resources (e.g., Pods, Daemonsets) enable attackers
to control where workloads are deployed, and to place
resources with access to Secrets on compromised Nodes.
4) Indirect Access via Node Manipulation: Using
update or * verbs on Node resources, attackers can ma-
nipulate taints to make all Nodes, except the compromised
one, unschedulable, forcing the Kubernetes scheduler to
deploy resources with access to Secrets onto the compro-
mised Node [92].

The results of Yang et al. [92] showed that 33.3%
of CNCF third-party applications [17], [21], [30] and all
applications provided by the top-four cloud vendors [38],
[39], [41], [53] were vulnerable to excessive permission
attacks [92]. KubeKeeper mitigates these threats by prevent-
ing unauthorized access to plaintext sensitive data through
both default configurations or excessive permissions.

4. Threat Model

We consider attackers who aim to gain unauthorized
access to Kubernetes Secrets, either by retrieving them
through the API server or by accessing them at runtime
via deployed workloads. We focus on two main types of
attackers: 1) attackers who compromise a containerized
application running inside the cluster, and 2) users or
Service Accounts that are granted excessive permissions
either due to misconfigurations or insecure defaults.

In the first case, the attacker exploits vulnerabilities in
a containerized application [70], [73], [79], [90], [91] to
gain remote code execution inside a Pod. From there,
they may access the Kubernetes API using the Pod’s
Service Account token, or escape the container using kernel
vulnerabilities [64], [88], [89] or misconfigurations [5],
[78], [86], [88] to compromise the Worker Node.

In the second case, the attacker may already have
access to the API server through a legitimate user account
or an over-privileged Service Account, and attempts to
access Secrets they were not intended to access. While
cloud platforms recommend isolating workloads to specific
Nodes to mitigate such risks [16], [35], [68], this isolation
can be circumvented. In practice, the misuse of excessive
permissions—especially those assigned to third-party appli-
cations—can break Node isolation and lead to full cluster
compromise and unauthorized access to Secrets [92].

In both cases, we assume that the attacker does not
compromise the Kubernetes Control Plane. Permissions
that allow privilege escalation (e.g., creating ClusterRoles
or modifying RBAC policies) are considered out of
scope, particularly when KubeKeeper is implemented using
a Webhook Server. Such permissions should never be
granted under even the most basic security practices. When

TABLE 2: Comparison between Kubernetes’ native RBAC-based access control and KubeKeeper.

Feature RBAC KubeKeeper Remarks

Ease of configuration × X KubeKeeper establishes a direct link between Secrets and their authorized Pods, eliminating the
need for the complex mappings that RBAC requires

Protection of Secrets at rest × X Unlike Kubernetes’ default configuration, KubeKeeper ensures that Secrets are stored encrypted

Protection of Secrets in transit × X KubeKeeper encrypts Secrets during transmission, offering protection against interception

Delivery of Encrypted Secrets × X KubeKeeper supports the delivery of Secrets in encrypted form

Fine-grained access control × X KubeKeeper offers increased protection granularity through per-Pod access controls

Owner-defined access control × X KubeKeeper allows only the Secret owners to exclusively designate which Pods are authorized

Protection against unauthorized access X X Both systems are designed to prevent unauthorized access

Protection against compromised components × X Even if Kubernetes deployment resources are compromised, KubeKeeper maintains security through
data encryption, controlled access, and proactive monitoring

Protection against misconfigurations × X KubeKeeper reduces the risk of security breaches caused by configuration errors

Low impact on application performance X X KubeKeeper does not introduce any performance degradation during execution

KubeKeeper is implemented using a Webhook Server,
we consider it part of the trusted computing base. The
Webhook Server is deployed in a dedicated Namespace
and isolated Node, and Secret-related permissions alone
are not sufficient to compromise it.

5. Design

KubeKeeper enhances Kubernetes Secrets management
by encrypting Secrets with unique keys and tightly con-
trolling their decryption. While encrypted Secrets remain
accessible under existing access control mechanisms, their
decrypted forms are restricted. When a Secret is created,
it is intended for specific purposes and designated re-
sources. Therefore, during application deployment, it is
clear which resources will require access to a defined
Secret. Additionally, when new resources require access
to these Secrets, they can be accommodated by updating
the list of authorized resources. Consequently, decryption
keys are made available exclusively to specific Pods that
receive explicit authorization during a Secret’s deployment
or update process. This maintains open access to encrypted
Secrets while ensuring strict control over their decryption.

We designed KubeKeeper according to the following
key requirements:

• Prevent excessive permissions from enabling unau-
thorized (direct or indirect) access to Secrets.

• Provide controlled access to encrypted Secrets,
restricting decryption only to authorized workloads.

• Enhance and simplify the management of Secrets.
• Maintain compatibility with Kubernetes and avoid

any changes to its source code.
• Avoid the need to modify the source code of

applications consuming Secrets.

5.1. Advantages Over RBAC

KubeKeeper offers several advantages over Kubernetes’
native Role-Based Access Control (RBAC) in terms of
both usability and increased protection against additional
threats. Kubernetes relies primarily on RBAC to manage
access to secrets, requiring manual configuration of Roles,
ClusterRoles, and their bindings to Kubernetes resources.
This setup becomes particularly challenging and error-
prone, as we demonstrate in Section 7.2.3, especially in
dynamic environments where roles and responsibilities

frequently change. In contrast, KubeKeeper establishes
automatically a direct link between Secrets and their
authorized Pods, eliminating the need for the complex
mappings required by RBAC.

RBAC policies determine who can create, read, or
delete resources via the API Server, but they lack granular
control over which Secrets a pod can mount [4], [9], [10],
[14]. KubeKeeper addresses this limitation by providing
more fine-grained access controls specific to each Pod. It
also implements an access control mechanism for Secrets
owners, allowing only the owner who deploys a Secret to
authorize access to the designated Pods.

In addition to fine-grained access control, KubeKeeper
introduces an extra layer of security by keeping Secrets
always encrypted and actively monitoring their use. This
ensures that even if RBAC controls are bypassed and Se-
crets in etcd can be accessed, they will remain secure and
unusable, since attackers cannot access the corresponding
cryptographic keys. This approach also protects Secrets
during transmission, by keeping them encrypted until the
moment they are actually used.

Additional security benefits of KubeKeeper include
guarding against excessive permissions that could allow
attackers to run a separate Pod with access to a Secret
within a compromised Node, i.e., indirect unauthorized
access. From a performance perspective, similarly to
RBAC, KubeKeeper does not introduce any measurable
overhead during execution. Table 2 provides a detailed
comparative analysis between Kubernetes’ native RBAC
access control and KubeKeeper.

5.2. Overall Architecture

To integrate with Kubernetes, KubeKeeper enhances
Admission Control modules to mutate or validate requests
related to Secret creation, Secret mounting, and critical
resource updates. Figure 2 provides an overview of the pro-
posed architecture. Since KubeKeeper must encrypt Secrets
at creation time, receive the list of authorized resources for
access, and verify the authority of workloads attempting to
access those Secrets, our design leverages key Admission
Plugins that intercept requests for Secret creation, Pod
creation, and Node updates. Importantly, KubeKeeper
integrates with the cluster without altering the standard
process of deploying Secrets or workloads. Instead, it
introduces additional Plugins during the Admission phase
of the API server to enforce encryption and access control.

U
se

r/
Se

rv
ic

e
A

cc
o

u
n

t

secret

Authentication

Authorization

Admission Control

KubeKeeper’s
Admission

Plugins

Master Node Worker Node

API Server

Init
container

Sh
ar

ed
 V

o
lu

m
e

Main
containers

Init
container

Figure 2: Integration of KubeKeeper within a Kubernetes cluster. The architecture highlights key components and
interactions, including KubeKeeper’s Admission Plugins for dynamic Secret management.

Moreover, during Pod runtime, KubeKeeper requires an
injected init container to perform the decryption tasks.

A key goal of KubeKeeper is to provide practical
protection without burdening developers, by not requiring
any changes to the source code of applications—only
minimal, high-level configuration changes are needed.
We also use i) the built-in feature of annotations,
which are arbitrary, non-identifying metadata attached
to objects [11], to determine the authorized resources
for each Secret; and ii) labels, which are key–value
pairs attached to Kubernetes objects [27], to inform Kube-
Keeper’s Admission Plugins when to mutate resources.
This makes the adoption of KubeKeeper straightforward in
existing applications. At the same time, full compatibility
with legacy, non-KubeKeeper-protected applications is
maintained by not altering Kubernetes’ native Secrets
management. When an application uses Secrets without the
specific label to trigger KubeKeeper’s Webhook APIs, they
remain unaltered and are protected solely by the native
Kubernetes policies.

5.3. Secrets Annotation and Encryption

Secrets are typically created using manifests or Helm
charts, both of which are widely adopted for managing
Kubernetes resources [45], with sensitive data stored in a
Base64-encoded format. It is also possible to use a CLI
command (manual approach), which is commonly used
when a Secret does not require complex configurations or
long-term management. In our approach, we assume that
Secrets are created using a manifest file or through Helm
charts, ensuring that our solution is compatible with both
methods commonly used in production environments [25].

Listing 1: YAML manifest for the deployment of a Secret
protected using KubeKeeper.

1 kind: Secret
2 metadata:
3 name: secret-data
4 namespace: production
5 annotations:
6 secret-ownerships:

"example-pod:Pod:production"
7 labels:
8 protected-secret: "true"
9 type: Opaque

10 data:
11 sensitivedata: bmV3dGVzdAo=

Listing 1 shows a sample YAML configuration file
for deploying a Secret. To ensure Secrets are protected
by KubeKeeper, Secrets manifests should contain the
label protected-secret with the value set to true,
whether using a static YAML file or a Helm chart.
We leverage Kubernetes’ built-in labels [27] attribute
within the metadata section to annotate these Secrets.
This label signals the KubeKeeper Admission Plugin,
SecretMutation, to encrypt the Secrets. Figure 3
illustrates the workflow followed by KubeKeeper to protect
Secrets during deployment.

After a request to deploy or update a Secret is received
by the API server and passes authentication and authoriza-
tion, it is delivered to the SecretMutation Admission
Plugin. The plugin inspects the request to determine
whether the Secret should be protected by KubeKeeper,
based on the presence of the protected-secret label.
If protection is required, the plugin extracts the Secret’s
Name and Namespace attributes, which are combined to
form the Secret’s unique identifier (as a ResourceName
is unique within its respective Namespace). Using this
identifier, the plugin stores information related to the Secret
in a key–value database.

Secrets generation requests should also specify the
resources authorized to access each Secret. Secrets are
created with a specific purpose and designated resources
in mind, and a Secret’s owner typically knows exactly
which resources will require access. As illustrated in
Listing 1, we use the built-in annotations attribute [27]
within the metadata section. This allows the Secret owner
to define which resources are authorized to access the
Secret. To ensure uniqueness and avoid duplication when
identifying an authorized resource, we use a combi-
nation of the ResourceName, ResourceKind, and
ResourceNamespace as the resource identifier. To
eliminate the need for manual intervention, KubeKeeper
uses an automated approach to identify all authorized
resources for each Secret during application deployment.
It processes the application’s Kubernetes manifests, extracts
all mappings between Secrets and resources, and uses these
mappings to populate the annotation value for each Secret,
indicating the resources that have mounted it.

If present, the SecretMutation Admission Plu-
gin also extracts the secret-ownerships annotation,
which identifies the authorize resources for the Secret.
Then, the plugin either generates a new encryption key for

the Secret or retrieves an existing one from the database us-
ing the Secret’s identifier. The corresponding value includes
the encryption key, ownership information, and the Service
Account that created the Secret. By securely storing these
details, KubeKeeper supports future updates or modifica-
tions to the Secret. This information is accessible through
another plugin, DeploymentMutation, which ensures
that only authorized owners can access the encrypted data.
The Service Account is used by the SecretMutation
Admission Plugin to enforce access control, allowing only
the Service Account that created the Secret to update its
authorized owners (i.e., secret-ownerships).

The plugin proceeds to extract sensitive data within the
Secret (e.g., tokens) and encrypts it. Finally, it replaces the
original unencrypted data with its encrypted version before
sending the protected Secret back to the API server. The
encrypted Secret is then stored in etcd, consistent with
Kubernetes’ default behavior. Although Kubernetes can
encrypt Secrets at rest if encryption is enabled [43], this
feature is not enabled by default. The crucial difference
is that KubeKeeper not only ensures encryption at rest by
default, but also protects Secrets in transit. Since encryption
keys are stored in a separate database secured by the API
server, even if attackers compromise etcd or gain over-
privileged access to Secrets via the API server, they cannot
access the decrypted content.

5.4. Workload Authorization Verification

KubeKeeper uses the DeploymentMutation Plu-
gin for requests related to workload deployments
that require access to protected Secrets. As shown
in Listing 2, a deployed resource just needs to
add the protected-secret-access label and set
its value to true. Upon receiving a request, the
DeploymentMutation Plugin verifies it before deliv-
ering the encryption key for each Secret. This verification
process is illustrated in the top part of Figure 4. The
Plugin intercepts only Pod creation events, as all workload
deployments (e.g., StatefulSets, Deployments) ultimately
result in the creation of one or more Pods. Therefore,
instead of hooking different workload resources, we focus
solely on intercepting all Pod creations.

Listing 2: YAML manifest file for Pod deployment.
1 kind: Pod
2 metadata:
3 name: example-pod
4 namespace: production
5 labels:
6 protected-secret-access: "true"
7 spec:
8 volumes:
9 - name: secret-volume

10 secret:
11 secretName: secret-data
12 containers:
13 - name: test-container
14 image: nginx:1.14.2
15 volumeMounts:
16 - name: secret-volume
17 mountPath: "/etc/secret-volume"

Secrets are identified based on the SecretName
attribute specified in manifest files. For each mounted
Secret, the Plugin extracts its unique identifier and retrieves

the corresponding encryption key from the KeyStore
database. If the requesting resource’s identifier is not listed
among the authorized resources for even a single Secret,
the request is denied. Otherwise, the encryption key for
each Secret is retrieved and prepared for delivery to the Pod.
When the DeploymentMutation Plugin is started, it
loads a configuration policy file that specifies the Service
Accounts and the Namespaces in which they are only
allowed to create Pods within their Namespaces. We use
this feature to further restrict less secure Service Accounts,
including those used by third-party applications, to prevent
them from being misused by unauthorized users.

5.5. Selective Encryption Key Distribution

To make the decryption process transparent to appli-
cations that consume Secrets, we use an init container.
Figure 4 (bottom) illustrates the key distribution process,
where the Plugin rewrites the Pod specification to support
transparent decryption through an injected init container.
This container is responsible for mounting and decrypting
Secrets before the main application containers start, and
shares the decrypted Secrets through shared Volumes with
the main containers. Therefore, this container must have
access to both the encryption keys and the encrypted Secret
values. The DeploymentMutation Admission Plugin
adds an init container with a customized specification
that provides access to these encryption keys and Secret
values and uses a custom container image. Listing 3 shows
the Pod manifest from Listing 2 after being processed by
the DeploymentMutation Plugin.

Listing 3: The spec part from Listing 2 after being
processed by the DeploymentMutation Plugin.

1 spec:
2 volumes:
3 - name: encrypted-secret-volume
4 secret:
5 secretName: secret-data
6 - name: secret-volume
7 emptyDir:
8 medium: Memory
9 initContainers:

10 - name: init-myapp
11 image: decrypt-image:v1.0.0
12 env:
13 - name: ENCRYPTION_KEY_new_secret_data
14 value:

"bTVaQb08+DIn5qkemh83RRkYnLaUpFXITZ"
15 volumeMounts:
16 - name: encrypted-secret-volume
17 mountPath:

"/etc/encrypted-secret-volume"
18 - name: secret-volume
19 mountPath: "/etc/secret-volume"
20 containers:
21 - name: test-container
22 image: nginx:1.14.2
23 volumeMounts:
24 - name: secret-volume
25 mountPath: "/etc/secret-volume"

5.6. Secrets Decryption in the Init Container

To modify the workload specification, the Plugin scans
the Pod’s Volume specifications to identify Volumes that

Secret
Creation
Request

Yes

No

API Server
authenticates and
authorizes request

API Server triggers
SecretMutation Plugin

Extract Secret’s
identifier attributes

from request

Extract authorized
resources from

annotations

Encrypt Secret with
generated key

Store Secret’s
metadata in database

Return Secret to API
Server for processing

API Server stores
Secret in etcd

Check if Secret
needs protection

Figure 3: Workflow of KubeKeeper’s SecretMutation Admission Plugin for encrypting Secrets.

reference sensitive Secrets. First, for each identified Vol-
ume, it creates a new Volume that refers to the same Secret,
using the prefix encrypted- to distinguish it from the
original. These prefixed Volumes are used to mount the
encrypted Secrets. Additionally, a shared Volume is created
using the original Volume name, allowing application
containers to access the decrypted Secrets at the expected
mount path. However, instead of mounting Secrets directly
from the API server, application containers retrieve them
from the shared Volumes populated by the init container.

Next, the Plugin generates a customized init con-
tainer specification that mounts the prefixed encrypted-
Volumes. All Secret encryption keys are injected into the
init container’s environment variables (env section in
Listing 3). These keys are used to decrypt the Secrets
before they are made available to the application containers.

Since third-party applications or other resources may
have access to both the Secrets and the Pod description
(via RBAC permissions), they could potentially read the
environment variables and extract the encryption keys
directly from the Pod specification. To mitigate this risk,
we use envelope encryption [20], in which each data
encryption key (DEK) is itself encrypted using a Key
Encryption Key (KEK). This KEK is made available to
the init container during its image creation. A unique
KEK is generated for each Node, and the appropriate key
is selected based on the Node that will host the Pod. The
KEK can either be hard-coded into the init container
or securely retrieved at runtime from an external Secrets
management service.

The init container’s primary role is to process the
encrypted Secrets and make them available through Shared
Volumes for application containers. Upon startup, the
init container retrieves the encryption keys from the
environment variables, decrypts them using the loaded
KEK, and then uses them to decrypt the Secrets.

All encrypted Secrets are mounted in directories named
/etc/encrypted-xxx, where xxx refers to the Secret
Volume names. The init container reads the encrypted
values, identifies the appropriate encryption key based on
the mapping between Volume paths and Secret names, and
performs decryption. The decrypted content is then written
to a shared in-memory Volume, allowing application
containers to access the decrypted Secrets transparently,
without requiring any changes to application code.

5.7. Preventing Indirect Workload Deployment

As mentioned in Section 5.4, to further restrict less
secure Service Accounts, we only allow them to deploy
Pods within their own Namespaces, even if they are

permitted to create Pods anywhere in the cluster, including
on a compromised Node. An attacker could still deploy a
Pod on a compromised Node by modifying other Worker
Nodes in a way that makes them unavailable or forces
them to repel their workloads. By applying such changes
to all other Worker Nodes, authorized Pods with access to
protected Secrets could be evicted from those Nodes and
forced to run on the attacker-controlled Worker Node [92].

To prevent this attack, KubeKeeper has a Val-
idating Admission Plugin (NodeValidation) that
intercepts any attempts of forcing a workload to
run on a compromised Node, such as setting the
node.kubernetes.io/unschedulable taint to
NoExecute. A taint is a property of Worker Nodes that
allows them to repel certain Pods [34]. KubeKeeper’s
Validating Plugin performs real-time checks on Node con-
figuration updates, blocking unauthorized changes before
they impact the cluster. If the request is initiated by a less
secure Service Account, as defined in the configuration
policy file, the request is automatically denied.

6. Implementation

The core component of KubeKeeper is its Admission
plugins. While Kubernetes supports compiled-in plugins
integrated into the API server, we implement KubeKeeper
using dynamic Admission Webhooks for simplicity and
ease of deployment. The core logic of an Admission Plu-
gin—intercepting and modifying Secret and Pod creation
requests—remains the same regardless of whether it is
implemented as a Webhook or compiled directly into the
API server. These Webhooks offer equivalent functionality
without requiring modifications to the Kubernetes source
code, making them ideal for seamless integration with
existing clusters [3], [8]. This choice does not limit Kube-
Keeper’s capabilities, as the same logic can be migrated
to a compiled-in plugin for tighter integration in future
Kubernetes versions.

We implemented KubeKeeper on top of Kubernetes
v1.29.4, leveraging its dynamic Admission Control fea-
tures [42] to build a secure Webhook Server. The Webhook
Server was developed using Go v1.22.2, while for our
KeyStore database component we used BoltDB, a pure
Go key–value store [40]. Docker was used for container
management, and Helm [45] was used for deploying the
Webhook Server and associated resources. Our implementa-
tion integrates the Webhook Server into Kubernetes clusters
to protect Secrets using several Webhook APIs provided
by the Kubernetes Admission controller. Additionally, we
implemented a tool using Python to extract the ownership
annotations of Secrets.

Workload
Creation
Request

Yes

No

API Server
authenticates and
authorizes request

API Server triggers
DeploymentMutation

Plugin

Check if workload
accesses protected

Secrets

Scan Pod Volume specs
for protected Secrets

Create "encrypted-"
Volumes for Secrets

Create shared Volumes
matching originals

Inject init container
to mount encrypted

Volumes and load keys

Modify container specs
for decrypted Secrets
via shared Volumes

Check workload
authorization

No

YesKey Distribution

Workload Authorization
Create workload Reject request

Figure 4: Workflow of KubeKeeper’s DeploymentMutation Plugin. The top section verifies requests before delivering
the encryption keys for each Secret, while the bottom section handles key distribution for Pods.

6.1. Automated Secret Annotations

To automate the process of annotating Secrets,
we developed a Python tool that scans Kubernetes
application manifests for YAML configuration files.
The tool identifies resources that mount Secrets and
extracts the ResourceName, ResourceKind, and
ResourceNamespace for each as identifiers, and maps
them to each mounted Secret. The tool also produces a
comprehensive mapping of all Secrets and the correspond-
ing resources that have mounted them. This enables owners
of Secrets to use the output for annotating each Secret,
ensuring they are safeguarded by KubeKeeper.

6.2. Webhook Server

At the core of KubeKeeper’s implementation is a
dedicated Webhook Server that enforces the Admis-
sion control policies. This Server receives and pro-
cesses Admission requests from the Kubernetes API
Server related to Secret and Pod creation. The Web-
hook Server intercepts Kubernetes API requests re-
lated to Secret creation via the SecretMutation,
Pod creation via the DeploymentMutation, and
Node changes via NodeValidation APIs. Since the
first two APIs require modification of the request
object, we use MutatingWebhookConfiguration,
whereas the Node changes API is deployed as a
ValidatingWebhookConfiguration to inspect re-
quests and verify their validity.

Our Admission Webhook Server is a service that runs
within the cluster and is hosted on a separate Node. As a
regular Kubernetes Deployment, it requires a Kubernetes
service to communicate with the Validating or Mutating
Webhooks. The WebhookConfiguration objects in-
struct the Kubernetes API server to send relevant requests,
such as those triggered by Secret or Pod creations, to the
Webhook Server, as illustrated in Listing 4.

Webhook Server APIs parse the AdmissionReview
object from the incoming request. This object contains
information about the Service Account that triggered
the webhook, as well as the Kubernetes object being
created or modified (e.g., a Secret or Pod). The Webhook
Server interacts with a BoltDB database to securely store
or retrieve encryption keys, and ownership information
associated with Kubernetes Secrets. We use AES-GCM for
encryption and generate a new 256-bit key for each unique

Secret. The server also stores the Service Account that
created the Secret to verify and support future updates to
the Secret. When it receives a request to update ownership
information, it ensures that the request comes from the
same Service Account that originally created the Secret.

Listing 4: Simplified YAML manifest for the
SecretMutation MutatingWebhookConfiguration
deployment.

1 kind: MutatingWebhookConfiguration
2 metadata:
3 name: SecretMutation
4 webhooks:
5 namespaceSelector: {}
6 rules:
7 - operations: ["CREATE", "UPDATE",

"PATCH"]
8 apiGroups: [""]
9 apiVersions: ["v1"]

10 resources: ["secrets"]
11 objectSelector:
12 matchLabels:
13 protected-secret: "true"
14 clientConfig:
15 service:
16 name: Kubekeeper
17 path: "/SecretMutation"

If changes are required for incoming requests, such as
encrypting a Secret value, the Webhook server constructs a
JSON patch that is included in the AdmissionReview
response to instruct Kubernetes how to modify the object
before it is persisted. The deploying-pods API also
adds an init container to the Pod descriptions using
a similar patch. It also adds a shared Volume for each
Secret and injects the corresponding encryption keys
into the init container as environment variables. These
encryption keys are encrypted using a generated KEK
(Key Encryption Key) for the target Node that is supposed
to host the deploying Pod. The shared Volumes use in-
memory storage with the medium: Memory attribute to
prevent writing the decrypted data to persistent storage,
similarly to Kubernetes Secret Volumes.

6.3. Decryption Process in Init Container

The init container is a critical component of Kube-
Keeper, designed to decrypt Kubernetes Secrets before
before making them accessible to application containers.
The init container is custom-built and runs a Go program
specifically developed to manage the decryption process.

The program retrieves the necessary encryption keys from
environment variables, which are securely provided by
the Webhook Server. These keys are further encrypted
with a KEK specific to the target Node where the Pod is
deployed.

In our current implementation, the KEK is hard-
coded within the container images, with access restricted
through strong authentication and role-based access control
(RBAC). However, in a production environment, we recom-
mend using a Secrets management tool (e.g., HashiCorp
Vault, AWS Secrets Manager) to securely inject the KEK
into the container at runtime, rather than hardcoding it.
This approach is discussed further in Section 8.

7. Experimental Evaluation

In this section, we evaluate the effectiveness of Kube-
Keeper in protecting Secrets against excessive permissions.
We first present our static analysis tool, developed to
identify excessive permissions in Kubernetes configura-
tions. We then validate the tool through real-world case
studies, demonstrating its capability to accurately detect
overprivileged configurations and assessing how effectively
our approach safeguards Secrets against these risks.

Our analysis spans three key categories: 1) all third-
party applications from CNCF projects [17], [21], [30],
2) third-party applications commonly used in Kubernetes
services provided by the top-four cloud vendors, and
3) custom applications sourced from GitHub and GitLab.
We ran our performance evaluation experiments on a server
equipped with an Intel Xeon E3-1240 CPU and 32GB of
RAM, running Ubuntu 20.04.5 and kernel v5.4.0-128.

7.1. Identifying Excessive Permissions

To thoroughly investigate excessive permissions that
could expose sensitive data, we developed a tool that scans
Kubernetes YAML files to identify excessive permissions
for each application. Our tool automates the process by
gathering information about all Service Accounts bound
to a Kubernetes resource and a Role or ClusterRole with
excessive permissions. While existing tools like a script
from a previous study [92] and KubiScan [49] can also
detect excessive permissions, we chose not to use them
for several reasons.

First, they must be deployed on a live cluster. This
means that we would have to manually install and run
all 498 applications, which would have been extremely
time-consuming. Additionally, dynamic analysis may be
incomplete, due to the various ways third-party applications
can be configured. In contrast, our tool only requires
the source code that contains the configuration files, and
automatically extracts all Service Accounts and resources
with excessive permissions.

Figure 5 illustrates the workflow of our static analysis
tool, which takes as input the URLs of GitHub and
GitLab repositories and clones them to access the relevant
YAML configuration files. When third-party applications
use Helm [45] charts to define and install their applications,
our tool renders the templates to generate manifests for
permission analysis. It identifies Helm charts via the
presence of a values.yaml file and a templates/
directory, builds dependencies, and uses Helm to render the

TABLE 3: Comparison of KubeKeeper’s static analysis
tool and the dynamic analysis tool by Yang et al. [92] in
detecting Secrets-related excessive permissions across 40
CNCF Kubernetes applications. KubeKeeper detects all
Secrets-compromising permissions with no missed cases.

Metric KubeKeeper Yang et
al. [92]

Apps with Excessive Permissions 30 27
Apps with Accurate Extraction 26 4
Apps with Incorrect Reports 0 14
Secret Permissions Missed 0 94

manifests. For directories containing Kustomize configura-
tions, it uses kustomize to render them. The tool then
analyzes the resulting manifest files to assess permissions
granted through Roles/ClusterRoles and RoleBindings/-
ClusterRoleBindings to Service Accounts, focusing on
overprivileged permissions that could lead to unauthorized
access to Secrets, following the strategies outlined by Yang
et al. [92]. These permissions are listed in Table 1. While
the tool considers all ClusterRoles that lead to unauthorized
access to Secrets, Roles are deemed overprivileged only if
defined in the default or kube-system Namespaces.

Our tool extracts relevant permissions for each Service
Account, highlighting excessive permissions in Cluster-
Roles and Roles. Furthermore, KubeKeeper needs a con-
figuration file containing all Service Accounts that are
only allowed to create resources within their respective
Namespaces. Therefore, the tool also identifies all Service
Accounts and Namespaces for direct integration into the
Webhook Server’s configuration, reducing errors.

7.2. Excessive Permissions Assessment

7.2.1. Dataset Collection. We analyzed a diverse dataset
from previous research [78], [92] to identify excessive
permissions that could lead to unauthorized access to
Secrets. This analysis assessed security risks across differ-
ent environments and evaluated the effectiveness of our
approach in mitigating these risks. Third-party applications
deployed within Kubernetes clusters—particularly those
from the CNCF project list [17]—are especially relevant,
as they often define their own access controls. The CNCF
list includes 176 projects in graduated, incubating,
and sandbox categories [21], [30]. A prior assessment
revealed that 51 out of 153 CNCF projects (33.3%) had
potential security risks [92].

Cloud vendors often use third-party applications to
extend their features, which can introduce security risks
by requesting excessive permissions [53]. Similarly to
previous work [92], we expanded our data set by analyzing
open-source applications from Google Kubernetes Engine
(GKE) [53], Amazon Elastic Kubernetes Service (Amazon
EKS) [38], Azure Kubernetes Service (AKS) [39], and
Alibaba Cloud Container Service for Kubernetes (Alibaba
Cloud ACK) [41], identifying 65 additional applications
across these providers.

Excessive permissions are common in Kubernetes ap-
plications, where RBAC configurations are often manually
specified by developers who may lack security expertise.
To further investigate this issue, we examined an extra set

Repository
URLs

Cloning Applications Rendering Helm
Templates

Assessing
YAML Files

Extracting
Overprivileged

Service Accounts

Cloned Repositories Rendered YAML Files ServiceAccount Files
ClusterRole/Role Files

ClusterRole/Role Binding Files

Application Permissions
Overprivileged Applications
Overprivileged Permissions

Figure 5: Overview of the workflow of our static analysis tool for identifying excessive permissions.

of 55 Kubernetes applications from previous research [78].
We also examined 202 more applications from GitHub,
identified by searching for Helm configuration files. In
total, we assessed 498 applications and found that 202
contained excessive permissions leading to unauthorized
access to Secrets.

7.2.2. Comparison with Prior Tool. To evaluate the
effectiveness of our excessive permissions extraction tool,
we conducted a small-scale comparison against the tool
by Yang et al. [92]. We selected a representative sub-
set of CNCF applications from the graduated and
incubating categories, and manually deployed each
application in a controlled Kubernetes cluster. We then
executed their tool on this live setup to extract the set of
detected permissions for each application.

In parallel, we applied the KubeKeeper tool to the same
set of applications. Unlike the prior tool [92], which in-
spects only the deployed state of applications, our approach
conducts a more comprehensive analysis by rendering all
possible configuration paths, including those defined by
Helm chart values and Kustomize overlays. During this
process, we enable configurations that represent the worst-
case privilege scenarios—ensuring that all permissions
which could potentially lead to unauthorized access to
Secrets are revealed, even if they are disabled by default.
As a result, KubeKeeper not only detects all excessive
permissions identified by the prior work [92], but also
uncovers additional permission paths that were missed
in their analysis. For all cases where the tools produced
differing results, we manually verified the permissions to
determine which tool was accurate.

A summary of the comparison is shown in Table 3.
KubeKeeper correctly extracted all excessive permissions
in 26 applications and missed no secret-related cases,
while the dynamic tool achieved full detection in only
4 cases and missed 94 secret-related permissions across
all applications. For 14 applications, the dynamic tool
reported excessive permissions that KubeKeeper did not
flag. We manually inspected these cases and found that
the reported permissions were either correctly confined
to appropriate API groups relevant to the application
or were restricted to their own namespaces. Therefore,
we considered these as incorrectly reported permissions.
The results demonstrate that our static analysis, when
accounting for full configuration paths, provides more
complete results.

7.2.3. Effectiveness Assesment. To assess the effective-
ness of KubeKeeper, we ran our static analysis tool on
all applications in our dataset. The tool identifies and
extracts all RBAC permissions mentioned in Table 1 that

CNCF Applications Cloud Applications Other Applications
0

10

20

30

40

50

60

70

80

Ap
pl

ica
tio

ns
 w

ith
 E

xc
es

siv
e

Pe
rm

iss
io

ns
 (C

ou
nt

)

83.5%

72.7%

88.9%

48.1%

42.4%

53.3%

81.0%

78.8%

76.7%

24.1%

30.3%

20.0%

Direct Access via Secret Permissions
Indirect Access via Secret Manipulation
Indirect Access via Resource Scheduling Control
Indirect Access via Node Manipulation

Figure 6: Breakdown of different types of unauthorized
access to Secrets for the applications in our dataset.

are bound to a Service Account. Figure 6 shows the
distribution of Secret-compromising permissions across
various applications within different categories, highlight-
ing the prevalence of overprivileged permissions. It also
demonstrates how direct permissions to Secrets are often
assigned carelessly to ClusterRoles/Roles—more than 72%
of the applications in each category had this permission.

When a Service Account is granted permission to
create resources within a cluster or a Namespace, this
permission also gives it access to all Secrets within the
defined Namespace. This is particularly dangerous because
it gives the attacker permission to mount resources with a
privileged Service Account. As seen in the figure, nearly
81% of applications in the CNCF Applications category
and 79% of those in the Cloud Applications category
received these permissions.

More than 40% of applications in each category have
permissions to mutate Secrets, such as defining a token
for a Service Account or updating Secret ownerships.
Although updating Nodes appears to be a less common
permission, the figure shows that approximately 24% of
CNCF Applications, 30% of Cloud Applications, and 20%
in the rest of the applications have this permission, allowing
them to mark a Node as unschedulable or remove it from
service.

Table 4 provides an overview of the number of appli-
cation repositories in each category with excessive permis-
sions, highlighting the prevalence of Secret-compromising
vulnerabilities. The results show that 202 out of the 498
applications (41%) possess such permissions. Notably,
84% of these vulnerable applications have direct access
to Secrets or excessive permissions related to resource

TABLE 4: Overview of application repositories containing Secrets-compromising excessive permissions across various
categories. KubeKeeper protects the Secrets of all these applications against unauthorized access.

Application Categories Total
Number of Applications with

Secret-Compromising Permissions Protected by
KubeKeeper

Count
Direct Access

via Secret
Permissions

Indirect Access
via Secret

Manipulation

Indirect Access
via Resource

Scheduling Control

Indirect Access
via Node

Manipulation

CNCF Applications

Graduated [21] 26 9 (34.6%) 9 (34.6%) 2 (7.7%) 6 (23.1%) 2 (7.7%) X
Incubating [21] 36 19 (52.8%) 18 (50.0%) 14 (38.9%) 17 (47.2%) 4 (11.1%) X
Sandbox [30] 114 51 (44.7%) 39 (34.2%) 22 (19.3%) 41 (36.0%) 13 (11.4%) X

Sum 176 79 (44.9%) 66 (37.5%) 38 (21.6%) 64 (36.4%) 19 (10.8%)

Cloud Applications

Google Kubernetes Engine [53] 17 8 (47.1%) 6 (35.3%) 1 (5.9%) 6 (35.3%) 1 (5.9%) X
Amazon Elastic Kubernetes Service [38] 25 15 (60.0%) 10 (40.0%) 8 (32.0%) 13 (52.0%) 6 (24.0%) X
Azure Kubernetes Service [39] 8 3 (37.5%) 2 (25.0%) 0 (0.0%) 1 (12.5%) 0 (0.0%) X
Alibaba Cloud Container Service [41] 15 7 (46.7%) 6 (40.0%) 5 (33.3%) 6 (40.0%) 3 (20.0%) X

Sum 65 33 (50.8%) 24 (36.9%) 14 (21.5%) 26 (40.0%) 10 (15.4%)

Other Applications

Public Dataset [78] 55 10 (18.2%) 9 (16.4%) 3 (5.5%) 5 (9.1%) 1 (1.8%) X
Additional Applications 202 80 (39.6%) 71 (35.1%) 45 (22.3%) 64 (31.7%) 17 (8.4%) X

Sum 257 90 (35.0%) 80 (31.1%) 48 (18.7%) 69 (26.8%) 18 (7.0%)

Total 498 202 (40.6%) 170 (34.1%) 100 (20.1%) 159 (31.9%) 47 (9.4%)

TABLE 5: Frequency of Secret-compromising permission types across application categories. KubeKeeper protects these
applications against all four types of excessive permissions.

Excessive Permission Types The Frequency of Excessive Permissions Total (Protected by
KubeKeeper %)

CNCF Applications Cloud Applications Other Applications

Direct Access via Secret Permissions 605 (32.4%) 328 (40.5%) 1,160 (37.8%) 2,093 (100%)
Indirect Access via Secret Manipulation 147 (7.9%) 66 (8.2%) 396 (12.9%) 609 (100%)
Indirect Access via Resource Scheduling Control 1,021 (54.7%) 376 (46.4%) 1,436 (46.8%) 2,833 (100%)
Indirect Access via Node Manipulation 93 (5.0%) 40 (4.9%) 76 (2.5%) 209 (100%)

Total 1,866 810 3,068 5,744 (100%)

scheduling control. Table 5 further quantifies the results
by detailing the frequency of each type of excessive
permission across different application categories. There
are 2,093 permissions that provide direct access to Secrets
through Secret permissions and 2,833 that do so indirectly
by controlling resource deployment. In general, these
findings illustrate the prevalence and severity of permission
mismanagement in Kubernetes environments.

KubeKeeper is effective in preventing unauthorized
access to Secret data through all types of excessive permis-
sions across all applications categories, as demonstrated in
Tables 4 and 5. For Direct Access via Secret Permissions,
KubeKeeper ensures that even if a Service Account is
granted access to all Secrets, encrypted Secrets remain
accessible only through the APIs, as they are fetched
from etcd. In the case of Indirect Access via Secret
Manipulation permissions, such as patch or update,
KubeKeeper limits the ability to update deployed Secrets to
the Secret’s owner Service Account—the one that deployed
the Secret. This prevents unauthorized Service Accounts
from altering Secret content or ownership annotations.

Permissions that allow the creation or modification of
workloads, categorized as Indirect Access via Resource
Scheduling Control, can be exploited to deploy resources
on compromised Nodes. KubeKeeper counters this by
restricting decryption keys to pre-authorized Pods, and
preventing unauthorized resource deployment by specifying
which Service Accounts are only permitted to create Pods
within their respective Namespaces. This policy is enforced

by the deploying-pod Webhook. These Service Ac-
counts, often linked to third-party apps, tend to be less
secure. Therefore, if a compromised component attempts
to create a workload within another Namespace that is
authorized to access sensitive data, KubeKeeper denies the
request. However, while the compromised component can
still deploy workloads within its own Namespace, these
components are not permitted by other Secret owners to
access their Secrets.

Attackers may also misuse Node manipulation permis-
sions, categorized as Indirect Access via Node Manipula-
tion, to force sensitive workloads onto compromised Nodes.
KubeKeeper’s NodeValidation Validating Webhook
API blocks such actions by prohibiting unauthorized
Service Accounts from updating the Node properties.

7.2.4. Performance Evaluation. KubeKeeper minimizes
its impact on application performance by limiting its
major operations mostly during the deployment phase,
and specifically during the creation of Secrets and Pods.
Unlike solutions like HashiCorp Vault’s vault-k8s [55],
which require ongoing interactions with external systems,
KubeKeeper performs encryption and decryption only
once during initialization and deployment. Afterwards,
applications run without any performance overhead, as
Secrets are securely integrated. Webhook calls are trig-
gered only during the initial deployment of Secrets and
Pods, using specific labels (protected-secret and
protected-secret-access), without affecting the

creation of other resources.
We experimentally evaluated the overhead during Pod

creation and deployment with second-level precision. This
level of precision was chosen as Kubernetes also uses
second-level timestamps, given that most events occur over
a span of seconds or longer. Since Secrets are generated
before being used by a resource, their creation does not
impact runtime performance and occurs only once prior
to Pod deployment.

For Pods, the DeploymentMutation Webhook in-
tercepts and modifies the Pod specification during deploy-
ment, specifically between Pod creation and deployment.
This introduces a one-time overhead during the initial-
ization phase, where the init container is responsible for
decrypting Secrets before the main container starts. We
measured this delay using timestamps recorded during dif-
ferent stages of the deployment process, such as StartAt
and creationTimestamp. The creation-delay
was calculated as the time taken from the initiation of
the deployment to when the Pod is created by Kubernetes.
Additionally, startup-delay measures the time from
when the Pod is created to the moment it enters the Running
or Completed state.

To evaluate Pod creation and deployment latency, we
conducted an experiment using a Deployment with 10
replicas, each creating 10 instances of the following popular
containers: Nginx, Redis, Node.js, Python, PostgreSQL,
Elasticsearch, and Jenkins. We developed a Python script
that interacts with Kubernetes APIs to fetch timestamps
for the Pods. We measured the latency in two scenarios:
first, without accessing KubeKeeper-protected Secrets to
measure Kubernetes’ baseline delays, and second, when
mounting a protected Secret to measure KubeKeeper’s
impact. We recorded the creation and startup times for all
10 Pods in each case and calculated the average latency.
Our results show that KubeKeeper introduces no significant
overhead during creation and deployment, with second-
level precision indicating that any overhead is less than
one second.

7.2.5. Security Evaluation. To evaluate the security of
KubeKeeper, we analyze how it mitigates specific attack
vectors commonly associated with Secret-compromising
excessive permissions in Kubernetes environments. Build-
ing on prior work that highlights the risks of excessive
permissions in third-party applications [92], we focused on
the four critical categories of permissions listed in Table 1.
We implemented proof-of-concept attacks using a Kind
cluster [46], simulating a Kubernetes environment with
two Worker Nodes and one Master Node. One Worker
Node hosted a vulnerable container alongside third-party
applications, mirroring the setup shown in Figure 1.

In our simulated attacks, an adversary gains control of a
compromised Node and acquires JWT tokens of all running
Pods. These tokens enable the attacker to interact with
the Kubernetes API Server, thereby gaining the associated
privileges. The attack scenarios align closely with those
described in Section 3. We installed third-party applications
from CNCF projects, each containing Secret-compromising
excessive permissions to simulate the potential attack
vectors. Three applications with the first three categories
of excessive permissions were chosen from graduated
projects, while an application from the incubating

projects was used for the Node manipulation category. We
are working with the developers of these applications to
address these issues, so their names are not disclosed. All
the Service Accounts related to these and their Namespaces
were loaded into the Webhook Server during initialization.
We deployed one Secret and annotated it to restrict access
to only one specific Deployment.

Our evaluation demonstrates that when an attacker uses
a compromised JWT token to fetch Secrets via Kubernetes
APIs, only encrypted versions are retrieved. Attempts
to update the Secret using the compromised token are
denied by KubeKeeper’s SecretMutation Webhook Server
API, as the Service Account making the request differs
from the Secret’s creator. Additionally, attempts to patch a
Node or deploy an authorized resource with access to
a Secret on the compromised Node are blocked. The
DeploymentMutation and NodeValidation Webhook APIs
extract Service Accounts from the requests, compare them
with untrusted accounts, and deny the requests. Therefore,
KubeKeeper mitigates these risks by enforcing strict, fine-
grained access control and encryption, ensuring that even
if a Node is compromised, the attacker cannot exploit
excessive permissions to access Secrets.

8. Limitations and Discussion

Encryption and Key Management In the current
prototype of KubeKeeper, Key Encryption Keys (KEKs)
are hardcoded into the init container images. For produc-
tion, using an external Key Management Service (KMS)
is recommended to securely manage decryption without
exposing the KEK [20]. In this flow, all init containers
on a Node share the same Service Account, using its token
mounted in the init container to authenticate with the
KMS. The KMS controls access to KEKs, ensuring the
Service Account retrieves only its authorized key. The
Webhook API server maps the appropriate KEK based on
the Node scheduled to host the Pod.

Updating Secrets Currently, KubeKeeper supports
updates to deployed Secrets, particularly for attributes
such as secret-ownerships, which are crucial
for creating new workloads that depend on exist-
ing Secrets. The SecretMutation API handles up-
date requests by retrieving the relevant Secret from
the KeyStore database, encrypting its sensitive data,
and updating secret-ownerships if necessary. If
secret-ownerships are modified, the request must
originate from the account that deployed the Secret.

When sensitive data is updated, future workloads will
use the new value. However, if a Secret is already mounted
on a Pod, the Kubelet is responsible for updating the
value [32]. This can result in some Pods having outdated
Secret values until the update is fully propagated. Therefore,
it is recommended to manually trigger a rolling update of
the deployment when a Secret changes [29].

In KubeKeeper, decrypted Secrets are loaded from
shared Volumes rather than directly from Secrets, so
updates are not propagated automatically. The current
approach involves restarting resources through rolling
updates, allowing the init container to fetch and share
the updated Secrets. A more efficient approach would use
a Sidecar container that mounts all encrypted Secrets,

decrypts them when updated by the Kubelet, and updates
the values in the shared Volumes.

Secret Access and Consumption Secrets can be
consumed as environment variables instead of mounted
as Volumes [32], but this approach has a significant
drawback. Updates require container restarts, during which
environment variables may expose Secrets via logs or
processes [72], [74]. Currently, KubeKeeper supports
Volume-based consumption, using init containers to decrypt
Secrets before application startup. It can be extended to
support environment variables by detecting Secret refer-
ences, decrypting them in an init container, and injecting an
entrypoint script to export them as environment variables
at runtime.

KubeKeeper also restricts get access to Secrets, ensur-
ing only authorized workloads are permitted to retrieve or
consume them. While this may slightly affect workflows
relying on direct API access, it is generally not a limitation.
Since Admission Control does not handle get requests,
supporting this use case would require minor modifications
to the API server’s Secret fetch logic to enforce Kube-
Keeper’s authorization policy and return decrypted data
accordingly.

Scalability Across Platforms While we implemented
KubeKeeper on Kubernetes, it can be adapted for use
with other container management platforms that share
similar architectural frameworks. Platforms such as Red
Hat OpenShift [52], Azure Kubernetes Service (AKS) [39],
and Google Kubernetes Engine (GKE) [53] also use
Kubernetes as their underlying technology. These platforms
share the same core architectural components, such as
API servers with admission controllers and access control
mechanisms for managing Secrets, making the integration
of KubeKeeper feasible across these environments.

9. Related Work

Secret Management Approaches Kubernetes’ native
Secret management is often delegated to an external Key
Management Service (KMS) to enhance security [13],
[36], [47]. Kubernetes supports “encryption at rest” by
allowing Secrets stored in etcd to be encrypted using a
Data Encryption Key (DEK), which is itself encrypted by
a Key Encryption Key (KEK) managed by a KMS plugin.

While this setup enhances the confidentiality of Secrets
at rest, it lacks fine-grained runtime access control—any
Pod in the same Namespace with sufficient permissions can
mount a Secret in plaintext, introducing risks of excessive
or misallocated access, especially from overprivileged third-
party applications. KubeKeeper addresses these issues by
establishing an automatic direct link between Secrets and
their authorized Pods, eliminating the need for the complex
mappings required by RBAC. Additionally, KubeKeeper
differs from methods like Sealed Secrets [31], which focus
on encrypting secrets for storage but decrypt them upon
deployment. By keeping secrets encrypted until they are
used, KubeKeeper significantly enhances confidentiality
and security.

Kubernetes Security Challenges Extensive research
has focused on the security of Kubernetes environments,
particularly around system vulnerabilities and misconfig-
urations. Configuration analysis has effectively identified
common misconfigurations [66], [78], [84] and violations

of security best practices [67]. Studies have also shown how
excessive permissions in third-party applications runnning
on a cluster can compromise the entire cluster [92]. EPScan
is another tool that detects excessive RBAC permissions in
Kubernetes applications by combining static configuration
analysis with LLM-assisted program behavior modeling
at the Pod level [63]. However, it lacks available source
code and datasets, limiting the ability to directly compare
its findings with our results.

Several other studies have explored attack vectors
within Kubernetes clusters. Spahn et al. [86] used a
high-interaction honeypot to assess threats to exposed
containers and orchestration systems. Additional research
has examined privilege escalation attacks [71], co-residency
attacks [65], [85], DDoS attacks targeting auto-scaling [57],
and DevOps pipeline vulnerabilities [77]. Beyond Ku-
bernetes, LeakLess [81] has addressed data leakage in
serverless computing platforms using selective in-memory
encryption to protect sensitive data against memory leakage
attacks. In contrast, KubeKeeper focuses on Kubernetes-
specific infrastructure threats.

Broader efforts to enhance container security have
included creating system call profiles [59]–[62], [80],
automating AppArmor policy generation [23], [28], [93]–
[95], designing Namespaces for autonomous control [87],
developing network-level security enforcement [75], and
detecting malicious container images [58]. However, these
approaches do not mitigate excessive permission risks in
Kubernetes. KubeKeeper is, to the best of our knowledge,
the first approach designed to prevent unauthorized access
to Secrets caused by excessive permissions or insecure
default configurations in Kubernetes clusters.

10. Conclusion

We presented KubeKeeper, a robust solution designed
to address the security limitations of Kubernetes’ native
Secret management, particularly the risks associated with
insecure configurations and excessive permissions granted
to third-party applications. KubeKeeper enhances Kuber-
netes Secret management through automatic encryption and
tightly controlled decryption, ensuring that only explicitly
authorized Pods can access decrypted data. By leveraging
Kubernetes’ dynamic Admission Control, KubeKeeper
operates transparently, without requiring any changes to the
underlying infrastructure or application code. Our evalua-
tion, covering 498 Kubernetes applications, demonstrated
that excessive permission vulnerabilities are indeed preva-
lent in Kubernetes environments. However, KubeKeeper
effectively mitigates these security risks without causing
performance degradation during runtime or introducing
significant overhead during creation and deployment. These
results position KubeKeeper as an effective and scalable
solution for improving the security of Kubernetes clusters,
offering a practical approach to safeguarding sensitive
information in complex, containerized environments.

Acknowledgments. We thank the anonymous reviewers
for their constructive feedback. We also thank Jie Chen
for helping us with the assessment of excessive permis-
sions. This work was supported by the National Science
Foundation (NSF) through award CNS-2104148.

References

[1] Kubernetes Components. https://Kubernetes.io/docs/concepts/over
view/components/.

[2] The Kubernetes API. https://Kubernetes.io/docs/concepts/overview
/Kubernetes-api/.

[3] A Guide to Kubernetes Admission Controllers. https://Kubernetes.i
o/blog/2019/03/21/a-guide-to-kubernetes-admission-controllers/,
2019.

[4] How do I prevent Pods from Mounting Secrets in the Same
Namespace? https://stackoverflow.com/questions/61519188/how-d
o-i-prevent-pods-from-mounting-secrets-in-the-same-namespace,
2020.

[5] StackRox State of Container and Kubernetes Security Report
Reveals Rapid Growth across Container and Kubernetes Adoption,
Security Incidents, and DevSecOps Initiatives. https://www.prnews
wire.com/news-releases/stackrox-state-of-container-and-Kuberne
tes-security-report-reveals-rapid-growth-across-container-and-Ku
bernetes-adoption-security-incidents-and-devsecops-initiatives-3
01136399.html, 2020.

[6] With Kubernetes, the U.S. Department of Defense Is Enabling
DevSecOps on F-16s and Battleships. https://www.cncf.io/blog/2
020/05/07/with-Kubernetes-the-u-s-department-of-defense-is-ena
bling-devsecops-on-f-16s-and-battleships/, 2020.

[7] Managing Permissions with Kubernetes RBAC. https://www.paloal
tonetworks.com/cyberpedia/Kubernetes-rbac, 2021.

[8] What’s the difference between a Kubernetes Admission controller
plugin and an Admission webhook?, 2021. Accessed: 2025-03-06.

[9] Run a Pod in a Namespace Without Having Access to its Secrets?
https://www.reddit.com/r/Kubernetes/comments/w5g4ro/run a p
od in a namespace without having access to, 2022. Accessed:
2025-04-15.

[10] Ability to Create Pods Allows Access to Secrets in the Same
Namespace #116188. https://github.com/Kubernetes/Kubernetes/iss
ues/116188, 2023.

[11] Annotations. https://Kubernetes.io/docs/concepts/overview/working
-with-objects/annotations/, 2023.

[12] Controlling Access to the Kubernetes API. https://Kubernetes.io/do
cs/concepts/security/controlling-access/, 2023.

[13] How to Secure Your API Secret Keys From Being Exposed? https:
//www.spectrocloud.com/blog/effective-secrets-management-in-
Kubernetes-a-hands-on-guide, 2023.

[14] Restricting Secret Mounting for Pods. https://discuss.Kubernetes.i
o/t/restricting-secret-mounting-for-pods/26140, 2023.

[15] Workloads. https://Kubernetes.io/docs/concepts/workloads/, 2023.

[16] Best practices for Advanced Scheduler Features in Azure Kubernetes
Service (AKS). https://learn.microsoft.com/en-us/azure/aks/operat
or-best-practices-advanced-scheduler, 2024.

[17] CNCF Projects Are the Foundation of Cloud Native Computing.
https://www.cncf.io/, 2024.

[18] Configure Service Accounts for Pods. https://Kubernetes.io/docs/t
asks/configure-pod-container/configure-service-account/, 2024.

[19] Controllers. https://Kubernetes.io/docs/concepts/architecture/control
ler/, 2024.

[20] Envelope Encryption. https://cloud.google.com/kms/docs/envelope
-encryption, 2024.

[21] Graduated and Incubating Projects. https://www.cncf.io/projects/,
2024.

[22] kube-proxy. https://Kubernetes.io/docs/reference/command-line-to
ols-reference/kube-proxy/, 2024.

[23] KubeArmor:Runtime Security Enforcement. https://kubearmor.com/,
2024.

[24] kubelet. https://Kubernetes.io/docs/reference/command-line-tools-
reference/kubelet/, 2024.

[25] Kubernetes - Kubectl Create and Kubectl Apply. https://www.geek
sforgeeks.org/Kubernetes-kubectl-create-and-kubectl-apply/, 2024.

[26] Kubernetes Scheduler. https://Kubernetes.io/docs/concepts/scheduli
ng-eviction/kube-scheduler/, 2024.

[27] Labels and Selectors. https://Kubernetes.io/docs/concepts/overview
/working-with-objects/labels/, 2024.

[28] Manage AppArmor Profiles for Kubernetes Cluster. https://github
.com/sysdiglabs/kube-apparmor-manager, 2024.

[29] Performing a Rolling Update. https://Kubernetes.io/docs/tutorials/K
ubernetes-basics/update/update-intro/, 2024.

[30] Sandbox Projects. https://www.cncf.io/sandbox-projects/, 2024.

[31] Sealed Secrets. https://fluxcd.io/flux/guides/sealed-secrets/, 2024.

[32] Secrets. https://Kubernetes.io/docs/concepts/configuration/secret/,
2024.

[33] Service Accounts. https://Kubernetes.io/docs/concepts/security/ser
vice-accounts/, 2024.

[34] Taints and Tolerations. https://Kubernetes.io/docs/concepts/scheduli
ng-eviction/taint-and-toleration/, 2024.

[35] Tenant isolation. https://docs.aws.amazon.com/eks/latest/best-practi
ces/tenant-isolation.html, 2024.

[36] Using a KMS Provider for Data Encryption. https://Kubernetes.io/
docs/tasks/administer-cluster/kms-provider/, 2024.

[37] A Cloud Native Unstructured Data Storage. https://cubefs.io/, 2025.

[38] Amazon Elastic Kubernetes Service. https://aws.amazon.com/eks/,
2025.

[39] Azure Kubernetes Service (AKS). https://azure.microsoft.com/en-u
s/products/Kubernetes-service, 2025.

[40] BoltDB. https://dbdb.io/db/boltdb, 2025.

[41] Container Service for Kubernetes. https://www.alibabacloud.com/h
elp/en/ack/, 2025.

[42] Dynamic Admission Control. https://Kubernetes.io/docs/reference/a
ccess-authn-authz/extensible-admission-controllers/, 2025.

[43] Encrypting Confidential Data at Rest. https://Kubernetes.io/docs/t
asks/administer-cluster/encrypt-data/, 2025.

[44] etcd: A Distributed, Reliable Key-Value Store for the Most Critical
Data of a Distributed System. https://etcd.io/, 2025.

[45] Helm: The Package Manager for Kubernetes. https://helm.sh/,
2025.

[46] Kind. https://kind.sigs.k8s.io/, 2025.

[47] Kubernetes Secrets: Secure Kubernetes Clusters with the Power of
Vault and Dynamic Secrets. https://www.vaultproject.io/use-cases/
kubernetes, 2025.

[48] Kubernetes User Case Studies. https://Kubernetes.io/case-studies/,
2025.

[49] KubiScan: A Tool to Scan Kubernetes Cluster for Risky Permissions.
https://github.com/cyberark/KubiScan, 2025.

[50] Pods. https://Kubernetes.io/docs/concepts/workloads/pods/, 2025.

[51] Production-Grade Container Orchestration. https://Kubernetes.io/,
2025.

[52] Red Hat OpenShift. https://www.redhat.com/en/technologies/cloud
-computing/openshift, 2025.

[53] The Most Scalable and Fully Automated Kubernetes Service. https:
//cloud.google.com/kubernetes-engine, 2025.

[54] Using RBAC Authorization. https://Kubernetes.io/docs/reference/a
ccess-authn-authz/rbac/, 2025.

[55] Vault + Kubernetes (vault-k8s). https://github.com/hashicorp/vault
-k8s, 2025.

[56] Argonaut. Secret Management in Kubernetes: Approaches, Tools,
and Best Practices. https://medium.com/@argonaut.dev/secret-man
agement-in-Kubernetes-approaches-tools-and-best-practices-f1df
77392060.

[57] Ataollah Fatahi Baarzi, George Kesidis, Dan Fleck, and Angelos
Stavrou. Microservices made attack-resilient using unsupervised
service fissioning. In Proceedings of the 13th European workshop
on Systems Security, pages 31–36, 2020.

https://Kubernetes.io/docs/concepts/overview/components/
https://Kubernetes.io/docs/concepts/overview/components/
https://Kubernetes.io/docs/concepts/overview/Kubernetes-api/
https://Kubernetes.io/docs/concepts/overview/Kubernetes-api/
https://Kubernetes.io/blog/2019/03/21/a-guide-to-kubernetes-admission-controllers/
https://Kubernetes.io/blog/2019/03/21/a-guide-to-kubernetes-admission-controllers/
https://stackoverflow.com/questions/61519188/how-do-i-prevent-pods-from-mounting-secrets-in-the-same-namespace
https://stackoverflow.com/questions/61519188/how-do-i-prevent-pods-from-mounting-secrets-in-the-same-namespace
https://www.prnewswire.com/news-releases/stackrox-state-of-container-and-Kubernetes-security-report-reveals-rapid-growth-across-container-and-Kubernetes-adoption-security-incidents-and-devsecops-initiatives-301136399.html
https://www.prnewswire.com/news-releases/stackrox-state-of-container-and-Kubernetes-security-report-reveals-rapid-growth-across-container-and-Kubernetes-adoption-security-incidents-and-devsecops-initiatives-301136399.html
https://www.prnewswire.com/news-releases/stackrox-state-of-container-and-Kubernetes-security-report-reveals-rapid-growth-across-container-and-Kubernetes-adoption-security-incidents-and-devsecops-initiatives-301136399.html
https://www.prnewswire.com/news-releases/stackrox-state-of-container-and-Kubernetes-security-report-reveals-rapid-growth-across-container-and-Kubernetes-adoption-security-incidents-and-devsecops-initiatives-301136399.html
https://www.prnewswire.com/news-releases/stackrox-state-of-container-and-Kubernetes-security-report-reveals-rapid-growth-across-container-and-Kubernetes-adoption-security-incidents-and-devsecops-initiatives-301136399.html
https://www.cncf.io/blog/2020/05/07/with-Kubernetes-the-u-s-department-of-defense-is-enabling-devsecops-on-f-16s-and-battleships/
https://www.cncf.io/blog/2020/05/07/with-Kubernetes-the-u-s-department-of-defense-is-enabling-devsecops-on-f-16s-and-battleships/
https://www.cncf.io/blog/2020/05/07/with-Kubernetes-the-u-s-department-of-defense-is-enabling-devsecops-on-f-16s-and-battleships/
https://www.paloaltonetworks.com/cyberpedia/Kubernetes-rbac
https://www.paloaltonetworks.com/cyberpedia/Kubernetes-rbac
https://www.reddit.com/r/Kubernetes/comments/w5g4ro/run_a_pod_in_a_namespace_without_having_access_to
https://www.reddit.com/r/Kubernetes/comments/w5g4ro/run_a_pod_in_a_namespace_without_having_access_to
https://github.com/Kubernetes/Kubernetes/issues/116188
https://github.com/Kubernetes/Kubernetes/issues/116188
https://Kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://Kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://Kubernetes.io/docs/concepts/security/controlling-access/
https://Kubernetes.io/docs/concepts/security/controlling-access/
https://www.spectrocloud.com/blog/effective-secrets-management-in-Kubernetes-a-hands-on-guide
https://www.spectrocloud.com/blog/effective-secrets-management-in-Kubernetes-a-hands-on-guide
https://www.spectrocloud.com/blog/effective-secrets-management-in-Kubernetes-a-hands-on-guide
https://discuss.Kubernetes.io/t/restricting-secret-mounting-for-pods/26140
https://discuss.Kubernetes.io/t/restricting-secret-mounting-for-pods/26140
https://Kubernetes.io/docs/concepts/workloads/
https://learn.microsoft.com/en-us/azure/aks/operator-best-practices-advanced-scheduler
https://learn.microsoft.com/en-us/azure/aks/operator-best-practices-advanced-scheduler
https://www.cncf.io/
https://Kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://Kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://Kubernetes.io/docs/concepts/architecture/controller/
https://Kubernetes.io/docs/concepts/architecture/controller/
https://cloud.google.com/kms/docs/envelope-encryption
https://cloud.google.com/kms/docs/envelope-encryption
https://www.cncf.io/projects/
https://Kubernetes.io/docs/reference/command-line-tools-reference/kube-proxy/
https://Kubernetes.io/docs/reference/command-line-tools-reference/kube-proxy/
https://kubearmor.com/
https://Kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
https://Kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
https://www.geeksforgeeks.org/Kubernetes-kubectl-create-and-kubectl-apply/
https://www.geeksforgeeks.org/Kubernetes-kubectl-create-and-kubectl-apply/
https://Kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
https://Kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
https://Kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://Kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://github.com/sysdiglabs/kube-apparmor-manager
https://github.com/sysdiglabs/kube-apparmor-manager
https://Kubernetes.io/docs/tutorials/Kubernetes-basics/update/update-intro/
https://Kubernetes.io/docs/tutorials/Kubernetes-basics/update/update-intro/
https://www.cncf.io/sandbox-projects/
https://fluxcd.io/flux/guides/sealed-secrets/
https://Kubernetes.io/docs/concepts/configuration/secret/
https://Kubernetes.io/docs/concepts/security/service-accounts/
https://Kubernetes.io/docs/concepts/security/service-accounts/
https://Kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://Kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://docs.aws.amazon.com/eks/latest/best-practices/tenant-isolation.html
https://docs.aws.amazon.com/eks/latest/best-practices/tenant-isolation.html
https://Kubernetes.io/docs/tasks/administer-cluster/kms-provider/
https://Kubernetes.io/docs/tasks/administer-cluster/kms-provider/
https://cubefs.io/
https://aws.amazon.com/eks/
https://azure.microsoft.com/en-us/products/Kubernetes-service
https://azure.microsoft.com/en-us/products/Kubernetes-service
https://dbdb.io/db/boltdb
https://www.alibabacloud.com/help/en/ack/
https://www.alibabacloud.com/help/en/ack/
https://Kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/
https://Kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/
https://Kubernetes.io/docs/tasks/administer-cluster/encrypt-data/
https://Kubernetes.io/docs/tasks/administer-cluster/encrypt-data/
https://etcd.io/
https://helm.sh/
https://kind.sigs.k8s.io/
https://www.vaultproject.io/use-cases/kubernetes
https://www.vaultproject.io/use-cases/kubernetes
https://Kubernetes.io/case-studies/
https://github.com/cyberark/KubiScan
https://Kubernetes.io/docs/concepts/workloads/pods/
https://Kubernetes.io/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://Kubernetes.io/docs/reference/access-authn-authz/rbac/
https://Kubernetes.io/docs/reference/access-authn-authz/rbac/
https://github.com/hashicorp/vault-k8s
https://github.com/hashicorp/vault-k8s
https://medium.com/@argonaut.dev/secret-management-in-Kubernetes-approaches-tools-and-best-practices-f1df77392060
https://medium.com/@argonaut.dev/secret-management-in-Kubernetes-approaches-tools-and-best-practices-f1df77392060
https://medium.com/@argonaut.dev/secret-management-in-Kubernetes-approaches-tools-and-best-practices-f1df77392060

[58] Kelly Brady, Seung Moon, Tuan Nguyen, and Joel Coffman. Docker
container security in cloud computing. In Annual Computing and
Communication Workshop and Conference (CCWC), pages 0975–
0980. IEEE, 2020.

[59] Claudio Canella, Mario Werner, Daniel Gruss, and Michael Schwarz.
Automating seccomp filter generation for linux applications. In
Proceedings of the ACM Cloud Computing Security Workshop
(CCSW), pages 139–151, 2021.

[60] Nicholas DeMarinis, Kent Williams-King, Di Jin, Rodrigo Fonseca,
and Vasileios P. Kemerlis. Sysfilter: Automated system call filtering
for commodity software. In Proceedings of the International
Conference on Research in Attacks, Intrusions, and Defenses (RAID),
2020.

[61] Seyedhamed Ghavamnia, Tapti Palit, Azzedine Benameur, and
Michalis Polychronakis. Confine: Automated system call policy
generation for container attack surface reduction. In Proceedings
of the International Conference on Research in Attacks, Intrusions,
and Defenses (RAID), 2020.

[62] Seyedhamed Ghavamnia, Tapti Palit, Shachee Mishra, and Michalis
Polychronakis. Temporal system call specialization for attack
surface reduction. In Proceedings of the 29th USENIX Security
Symposium, 2020.

[63] Yue Gu, Xin Tan, Yuan Zhang, Siyan Gao, and Min Yang. EPScan:
Automated detection of excessive RBAC permissions in Kubernetes
applications. In Proceedings of the IEEE Symposium on Security
and Privacy (S&P), pages 11–11. IEEE Computer Society, 2024.

[64] Shaul Ben Hai and Artur Oleyarsh. Container Escape: New
Vulnerabilities Affecting Docker and RunC. https://www.palo
altonetworks.com/blog/prisma-cloud/leaky-vessels-vulnerabilities
-container-escape/, 2024.

[65] Yi Han, Jeffrey Chan, Tansu Alpcan, and Christopher Leckie. Using
virtual machine allocation policies to defend against co-resident
attacks in cloud computing. IEEE Transactions on Dependable and
Secure Computing, 14(1):95–108, 2015.

[66] Mubin Ul Haque, M. Mehdi Kholoosi, and M. Ali Babar. KGSec-
Config: A knowledge graph based approach for secured container
orchestrator configuration. In IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER), pages
420–431. IEEE, 2022.

[67] Shamim Shazibul Islam. Mitigating security attacks in Kubernetes
manifests for security best practices violation. In Proceedings of the
29th ACM Joint Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering,
pages 1689–1690, 2021.

[68] Google Kubernetes Engine (GKE). Isolate Your Workloads in
Dedicated Node Pools. https://cloud.google.com/Kubernetes-engi
ne/docs/how-to/isolate-workloads-dedicated-nodes, 2025.

[69] Picus Labs. The Ten Most Common Kubernetes Security Miscon-
figurations & How to Address Them. https://www.picussecurity.co
m/resource/blog/the-ten-most-common-Kubernetes-security-misc
onfigurations-how-to-address-them, 2024.

[70] Xin Lin, Lingguang Lei, Yuewu Wang, Jiwu Jing, Kun Sun, and
Quan Zhou. A measurement study on linux container security:
Attacks and countermeasures. In Proceedings of the 34th Annual
Computer Security Applications Conference (ACSAC), pages 418–
429, 2018.

[71] Artem Linetskyi, Tetiana Babenko, Larysa Myrutenko, and Vira
Vialkova. Eliminating privilege escalation to root in containers
running on Kubernetes. Scientific and Practical Cyber Security
Journal, 2020.

[72] Marko Luksa. Kubernetes in Action. Simon and Schuster, 2017.

[73] Antony Martin, Simone Raponi, Théo Combe, and Roberto Di
Pietro. Docker ecosystem—vulnerability analysis. Computer
Communications, 122:30–43, 2018.

[74] David Mytton. Storing Secrets in env vars Considered Harmful.
https://blog.arcjet.com/storing-secrets-in-env-vars-considered-har
mful/, 2024.

[75] Jaehyun Nam, Seungsoo Lee, Hyunmin Seo, Phil Porras, Vinod
Yegneswaran, and Seungwon Shin. BASTION: A security enforce-
ment network stack for container networks. In USENIX Annual
Technical Conference (USENIX ATC 20), pages 81–95, 2020.

[76] Rani Osnat. Kubernetes Secrets: How to Create, Use, and Secure
Them. https://www.aquasec.com/blog/managing-kubernetes-secrets
/, 2024.

[77] Nicholas Pecka, Lotfi Ben Othmane, and Altaz Valani. Privilege
escalation attack scenarios on the DevOps pipeline within a Kuber-
netes environment. In Proceedings of the International Conference
on Software and System Processes and International Conference
on Global Software Engineering (ICSSP-GSE), pages 45–49, 2022.

[78] Akond Rahman, Shazibul Islam Shamim, Dibyendu Brinto Bose,
and Rahul Pandita. Security misconfigurations in open source
Kubernetes manifests: An empirical study. ACM Transactions
on Software Engineering and Methodology (TOSEM), 32(4):1–36,
2023.

[79] Michael Reeves, Dave Jing Tian, Antonio Bianchi, and Z Berkay
Celik. Towards improving container security by preventing runtime
escapes. In IEEE Secure Development Conference (SecDev), pages
38–46, 2021.

[80] Maryam Rostamipoor, Seyedhamed Ghavamnia, and Michalis Poly-
chronakis. Confine: Fine-grained system call filtering for container
attack surface reduction. Computers and Security, 132:103325,
2023.

[81] Maryam Rostamipoor, Seyedhamed Ghavamnia, and Michalis
Polychronakis. LeakLess: Selective data protection against memory
leakage attacks for serverless platforms. In Proceedings of the
Network and Distributed System Security Symposium (NDSS), San
Diego, CA, February 2025.

[82] Miles S. Kubernetes: A Step-By-Step Guide for Beginners to Build,
Manage, Develop, and Intelligently Deploy Applications by Using
Kubernetes (2020 Edition). Independently Published, 2020.

[83] Haq Md Sadun, Thien Duc Nguyen, Franziska Vollmer, Ali Saman
Tosun, Ahmad-Reza Sadeghi, and Turgay Korkmaz. SoK: A
comprehensive analysis and evaluation of docker container attack
and defense mechanisms. In Proceedings of the IEEE Symposium
on Security and Privacy (S&P), pages 207–207, 2024.

[84] Shazibul Islam Shamim, Farzana Ahamed Bhuiyan, and Akond
Rahman. XI commandments of Kubernetes security: A systemati-
zation of knowledge related to Kubernetes security practices. In
Proceedings of the IEEE Secure Development Conference (SecDev),
pages 58–64. IEEE, 2020.

[85] Sushrut Shringarputale, Patrick McDaniel, Kevin Butler, and
Thomas La Porta. Co-residency attacks on containers are real. In
Proceedings of the 11th ACM SIGSAC Cloud Computing Security
Workshop (CCSW ’20), pages 53–66, 2020.

[86] Noah Spahn, Nils Hanke, Thorsten Holz, Christopher Kruegel, and
Giovanni Vigna. Container orchestration Honeypot: Observing
attacks in the wild. In Proceedings of the International Symposium
on Research in Attacks and Intrusions and Defenses (RAID), pages
381–396, 2023.

[87] Yuqiong Sun, David Safford, Mimi Zohar, Dimitrios Pendarakis,
Zhongshu Gu, and Trent Jaeger. Security namespace: Making linux
security frameworks available to containers. In Proceedings of the
27th USENIX Security Symposium, pages 1423–1439, 2018.

[88] Yossi Weizman. Secure Containerized Environments With Updated
Threat Matrix for Kubernetes. https://www.microsoft.com/en-us/se
curity/blog/2021/03/23/secure-containerized-environments-with-
updated-threat-matrix-for-Kubernetes/, 2021.

[89] Yossi Weizman. Container Breakout Vulnerabilities. https://www.
container-security.site/attackers/container breakout vulnerabilities
.html, 2024.

[90] Katrine Wist, Malene Helsem, and Danilo Gligoroski. Vulnerability
analysis of 2500 docker hub images. In Advances in Security,
Networks, and Internet of Things: Proceedings from SAM’20,
ICWN’20, ICOMP’20, and ESCS’20, pages 307–327. Springer
International Publishing, 2021.

[91] Ann Yi Wong, Eyasu Getahun Chekole, Martı́n Ochoa, and Jianying
Zhou. On the security of containers: Threat modeling, attack
analysis, and mitigation strategies. Computers and Security, 2023.

[92] Nanzi Yang, Wenbo Shen, Jinku Li, Xunqi Liu, Xin Guo, and
Jianfeng Ma. Take over the whole cluster: Attacking Kubernetes
via excessive permissions of third-party applications. In Proceedings
of the ACM Conference on Computer and Communications Security
(CCS), pages 3048–3062, 2023.

https://www.paloaltonetworks.com/blog/prisma-cloud/leaky-vessels-vulnerabilities-container-escape/
https://www.paloaltonetworks.com/blog/prisma-cloud/leaky-vessels-vulnerabilities-container-escape/
https://www.paloaltonetworks.com/blog/prisma-cloud/leaky-vessels-vulnerabilities-container-escape/
https://cloud.google.com/Kubernetes-engine/docs/how-to/isolate-workloads-dedicated-nodes
https://cloud.google.com/Kubernetes-engine/docs/how-to/isolate-workloads-dedicated-nodes
https://www.picussecurity.com/resource/blog/the-ten-most-common-Kubernetes-security-misconfigurations-how-to-address-them
https://www.picussecurity.com/resource/blog/the-ten-most-common-Kubernetes-security-misconfigurations-how-to-address-them
https://www.picussecurity.com/resource/blog/the-ten-most-common-Kubernetes-security-misconfigurations-how-to-address-them
https://blog.arcjet.com/storing-secrets-in-env-vars-considered-harmful/
https://blog.arcjet.com/storing-secrets-in-env-vars-considered-harmful/
https://www.aquasec.com/blog/managing-kubernetes-secrets/
https://www.aquasec.com/blog/managing-kubernetes-secrets/
https://www.microsoft.com/en-us/security/blog/2021/03/23/secure-containerized-environments-with-updated-threat-matrix-for-Kubernetes/
https://www.microsoft.com/en-us/security/blog/2021/03/23/secure-containerized-environments-with-updated-threat-matrix-for-Kubernetes/
https://www.microsoft.com/en-us/security/blog/2021/03/23/secure-containerized-environments-with-updated-threat-matrix-for-Kubernetes/
https://www.container-security.site/attackers/container_breakout_vulnerabilities.html
https://www.container-security.site/attackers/container_breakout_vulnerabilities.html
https://www.container-security.site/attackers/container_breakout_vulnerabilities.html

[93] Hui Zhu and Christian Gehrmann. AppArmor profile generator as
a cloud service. In International Conference on Cloud Computing
and Services Science (CLOSER), pages 45–55, 2021.

[94] Hui Zhu and Christian Gehrmann. Lic-Sec: An enhanced AppArmor
Docker security profile generator. Journal of Information Security
and Applications (JISA), 61:102924, 2021.

[95] Hui Zhu and Christian Gehrmann. Kub-Sec, an automatic Kuber-
netes cluster AppArmor profile generation engine. In International
Conference on COMmunication Systems and NETworks (COM-
SNETS), pages 129–137. IEEE, 2022.

	Introduction
	Background
	Kubernetes Architecture
	Kubernetes API Server
	Kubernetes Secrets

	Secret Management Limitations
	Secret Exposure via Excessive Permissions

	Threat Model
	Design
	Advantages Over RBAC
	Overall Architecture
	Secrets Annotation and Encryption
	Workload Authorization Verification
	Selective Encryption Key Distribution
	Secrets Decryption in the Init Container
	Preventing Indirect Workload Deployment

	Implementation
	Automated Secret Annotations
	Webhook Server
	Decryption Process in Init Container

	Experimental Evaluation
	Identifying Excessive Permissions
	Excessive Permissions Assessment
	Dataset Collection
	Comparison with Prior Tool
	Effectiveness Assesment
	Performance Evaluation
	Security Evaluation

	Limitations and Discussion
	Related Work
	Conclusion
	References

